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Abstract

Multidrug resistance is a major hindrance in managing cancer. By performing a series of experiments in chemoresistant 
colorectal cancer cell lines, we demonstrate that oligomeric proanthocyanidins (OPCs) from grape seed extracts can 
sensitize both acquired (HCT116-FOr cells) and innately chemoresistant (H716 cells) cancer cells to chemotherapeutic drugs, 
5-fluorouracil (5FU) and oxaliplatin, by inhibiting adenosine triphosphate-binding cassette (ABC) transporter proteins. 
When combined with chemotherapeutic drugs, OPCs significantly inhibited growth of the chemoresistant cells (P < 0.05 to 
< 0.001) and decreased the expression of several key ABC transporters. Moreover, the activity of the ABC transporters was 
also significantly decreased by OPCs in the cell lines (P < 0.05). We further confirmed that co-treatment with OPCs sensitized 
the chemoresistant cells to 5FU and oxaliplatin, as observed by improvement in cell cycle arrest, double-strand breaks and 
p53 accumulation in these cells. In addition, we confirmed that co-administration of OPCs with chemotherapeutic drugs 
significantly decreased chemoresistant xenograft tumor growth in mice (P < 0.05). Together, our study illuminates the 
downregulation of multiple ABC transporters as a mechanism by which OPCs overcome chemoresistance in cancer cells 
and may serve as adjunctive treatments in patients with refractory colorectal cancer.

Introduction
The various mechanisms by which oligomeric proanthocyanidins 
(OPCs) extracted from grape seeds exert anticancer effects 
have recently been an area of active research (1–6). By using a 
comprehensive, RNA-sequencing approach in colorectal cancer 
(CRC) cells, we have previously provided an unprecedented 
view of the genome-wide effects of OPCs in CRC (7,8). Our data 
supported some of the previous reports that OPCs modulate 
cell cycle, DNA replication and other key cancer-associated 
pathways. A closer analysis of our whole transcriptome results 
revealed that one of the key pathways that was distinctly and 
predominantly affected by the OPCs in colorectal cells was the 
adenosine triphosphate-binding cassette (ABC) transporter 
system. As ABC transporters play a central role in the 
development of drug resistance in cancer (9,10), we postulated 
that OPCs could potentially inhibit otherwise an overactive ABC 

transporter pathway in cancer cells, thereby offering additional 
insights on ways to overcoming chemoresistance in cancer.

Overexpressed in several chemoresistant cancer types, ABC 
transporters confer resistance to different chemotherapeutics 
including taxanes, alkaloids and doxorubicin, primarily through 
rapid elimination, thereby decreasing their overall accumulation 
within the cancer cells (11–17). Recognizing the potential clinical 
significance of ABC transporters in chemoresistance, over the 
years, concerted efforts have been made to develop therapeutic 
approaches to inhibit their activity. Consequently, various inhibitors 
of ABC transporters, including verapamil and quinine, were 
developed, which initially showed promise but failed clinically, due 
to high toxicity and other undesirable side effects (18,19). Likewise, 
other more specific ABC inhibitors, such as valspodar, biricodar, 
tariquidar and zosuquidar, also seemed attractive initially but failed 
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to significantly improve patient outcomes in clinical studies (20–
25). Hence, the quest for developing safe and effective compounds 
that can inhibit the activity of ABC transporters for overcoming 
chemoresistance in cancer is still on. Our discovery that OPCs can 
resensitize chemoresistant cancer cells to such drugs in a safe 
and effective manner is quite promising as an adjuvant therapy in 
refractory patients.

In this study, we undertake a series of assays to evaluate 
the anticancer efficacy of OPCs and demonstrate that these 
compounds potently inhibit progression of chemoresistant CRC 
by blocking overactive ABC transporters. The tumor-inhibitory 
properties of OPCs in cells and mice xenografts derived from 
chemoresistant HCT116 cells significantly associated with the 
decreased expression of key ABC enzymes such as MRP2, MDR1 
and ABCG1. Taken together, our data present OPCs as potential 
adjuvant therapeutic options in combination with conventional 
chemotherapeutic drugs for overcoming drug resistance and 
improving therapeutic outcome in patients with CRC.

Materials and methods

Cell culture and materials
CRC cell lines, HCT116 and H716, were purchased from the American 
Type Culture Collection (Manassas, VA). These cell lines were tested and 
authenticated using a panel of genetic and epigenetic markers and tested for 
mycoplasma on a regular basis. The cells were grown in Dulbecco’s modified 
Eagle’s medium (Gibco, Carlsbad, CA), supplemented with 10% fetal bovine 
serum, 1% penicillin and streptomycin, and maintained at 37˚C in a humidified 
incubator at 5% CO2. The drug-resistant cell line HCT116-FOr was established 
by maintaining the cells in increasing concentrations of 5-fluorouracil (5FU) 
and then oxaliplatin for several months. Both the cell lines were obtained 
from the American Type Culture Collection during the past 4–6 years; they 
were periodically authenticated every 4–6  months using a panel of short 
tandem repeats markers and a panel of genes with known genetic and 
epigenetic signatures; and the last authentication was performed in July 2018.

Grape seed-OPCs (VX1 extract; EuroPharma; 530 000  p.p.m. OPC 
concentration) were dissolved in dimethyl sulfoxide (DMSO) and diluted 
to appropriate experimental concentrations in culture medium. 5FU and 
oxaliplatin were bought from Sigma–Aldrich (Atlanta, GA) and dissolved 
in DMSO and water, respectively.

Cell viability and proliferation
Cells were plated in 96-well dishes at a density of 2000 cells per well in 
Dulbecco’s modified Eagle’s medium supplemented with 5% fetal bovine 
serum and antibiotics, and allowed to attach overnight. Cell proliferation 
was measured in cells treated with a combination of OPCs (100  ng/µl), 
which was the most effective dose that was previously determined in 
these cell lines (7,8,26); and 5FU (10 µM) or oxaliplatin (5 µM) for 72 h using 
water-soluble tetrazolium-1 assay (a colorimetric cell proliferation assay, 
from Sigma–Aldrich) per manufacturer’s instructions. Each experiment 
was performed in triplicate.

Cell cycle and apoptosis analysis
Cells plated in 24-well dishes were treated with OPCs or curcumin for 
48  h in triplicates. Cell cycle and apoptosis assays were performed 
using Muse Cell Cycle Assay Kit (MCH100106; Millipore, Chicago, IL) and 
Muse Caspase-3/7 Kit (Millipore), respectively, on a Muse Cell Analyzer 
(Millipore), per manufacturer’s instructions. Activation of Histone 2A was 
measured using Muse H2A.X activation detection kit (Millipore).

Evaluation of ABC transporter activity
Cells plated in P-100 dishes were treated with vehicle or OPCs for 48 h 
and then harvested in phosphate-buffered saline by trypsinization. 
EFLUXX-ID Green multidrug resistance assay kit from Enzo Life Sciences 
(Uniondale, NY) was used to assess the ABC pump enzymes, as activity per 
manufacturer’s protocol.

mRNA expression analysis
RNA from cells treated for 18  h with DMSO (vehicle), OPCs (100  ng/µl), 
5FU (10 µM), oxaliplatin (5 µM), OPCs (100 ng/µl) + 5FU(10 µM) and OPCs 
(100 ng/µl) + oxaliplatin (5 µM) were isolated using mRNeasy Kit (Qiagen, 
Carol Stream, IL). RNA from mice xenograft tumors collected in RNAlater 
solution (Qiagen) was extracted using mRNeasy Kit (Qiagen). Extracted 
RNA was used as a template for complementary DNA synthesis using a 
High-Capacity cDNA Reverse Transcription Kit (ThermoFisher Scientific, 
Dallas, TX) according to manufacturer’s protocol. Real-time quantitative 
PCR was performed using SensiFAST SYBR mix (Bioline, London, UK) 
using the primer sequences listed in Supplementary Table 1, available 
at Carcinogenesis Online. All real-time quantitative PCR target genes were 
calculated using ΔΔCt method normalized to β-actin.

Genome-wide RNA-sequencing analysis
RNA from cell lines treated with DMSO or 100 ng/µl of OPCs were single-
end sequenced. Next-generation sequencing library construction was 
performed using the TruSeq RNA Library Kit (Illumina, Chicago, IL) with 
up to 1  µg of total RNA input according to manufacturer’s protocol. The 
quality of individual libraries was assessed using a High Sensitivity DNA Kit 
(Agilent, Los Angeles, CA). Libraries were pooled together using a PippinHT 
instrument (Sage Science, Beverly, MA). Efficiency of size selection was 
assessed using the High Sensitivity DNA Kit (Agilent). Pooled libraries were 
quantitated via quantitative PCR using the KAPA Library Quantification Kit, 
Universal (KAPA Biosystems, Philadelphia, PA) prior to sequencing on an 
Illumina HiSeq 2500 with single-end 75 base read lengths. For the analysis 
of RNA sequencing, Fastq files were trimmed using Flexbar to remove 3′ 
bases with quality scores lower than 30 before alignment, as described 
previously (27). The trimmed reads were mapped to human genome version 
GRCh38 downloaded from GENCODE (28) using HISAT2 (29) to generate 
alignment files in bam format. Samtools name-sorted bam files (30) were 
processed using htseq-count to summarize gene level counts as described 
previously (31). DESeq2 was used for differential gene expression analysis of 
RNA-sequencing read counts (32). All sequencing data have been deposited 
to the GEO database (GSE109607).

Meta-analysis was performed using Stouffer’s P-value combination 
method (33) to identify genes that are homogenously up or downregulated 
independently in OPC-treated cells. In addition, kyoto encyclopedia of 
genes and genomes pathway enrichment analysis was performed on 
genes whose fold change expression (with respect to untreated controls) 
in cells treated with OPCs with respect to untreated controls.

Xenograft animal experiments
Seven-week-old male athymic nude mice (Envigo, Houston, TX) were housed 
under controlled conditions of light and fed ad libitum. Approximately 1 × 
106 HCT116-FOr cells were suspended in Matrigel matrix (BD Biosciences) 
and subcutaneously injected into mice using a 27-gauge needle (n  =  15 
per group). Mice were randomly assigned to different treatment groups 
and orally gavaged with vehicle (water) or OPCs (100 mg/kg body weight 
dissolved in vehicle). The mice were intraperitoneally injected with 5FU or 
oxaliplatin on alternative days for 6 weeks. Tumor size was measured each 
day by calipers. Tumor volume was calculated using the following formula: 
1/2 (length × width × width). The investigator was not blinded to the group 
allocation during the experiment and/or when assessing the outcome. The 
animal protocol was approved by the Institutional Animal Care and Use 
Committee, Baylor Scott and White Research Institute, Dallas, TX, USA.

Statistical analysis
All experiments were repeated three times. All data are expressed as 
mean ± standard deviation with statistical significance indicated when 
P < 0.05. Statistical comparisons between control and treatment groups 
were determined using paired t-test.

Abbreviations	

ABC	 adenosine triphosphate-binding 
cassette

CRC	 colorectal cancer
DMSO	 dimethyl sulfoxide
5FU	 5-fluorouracil
OPC	 oligomeric proanthocyanidin

http://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgy184#supplementary-data
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Results

Selection of appropriate models of chemoresistant 
CRC cells

Previously, we had identified the genome-wide effects of OPCs 

in CRC through comprehensive RNA-sequencing-based gene 

expression profiling (7). A striking observation we made when 

we explored the data in-depth was that several ABC transporters 

were downregulated by OPCs (Figure 1A). As ABC transporters 

have long been inculpated in the development of drug 

resistance, we were curious to examine the effects of OPCs in 

overcoming chemoresistance in CRC. To select the appropriate 
cell line models for this study, we evaluated the chemoresistance 
of several CRC cells to 5FU and oxaliplatin—the first-line 
chemotherapeutic drugs in CRC, by performing cell proliferation 
assays. We found HCT116 cell line to be sensitive to 5FU and 
oxaliplatin, and hence decided to use it as a representative 
model for a chemosensitive CRC. On the other hand, H716 cell 
line, derived from the ascites of patient with CRC undergoing 
5FU treatment (Figure 1B), was found to be inherently resistant to 
5FU and oxaliplatin, and was selected as a model for inherently 
chemoresistant CRC. To study the effect of OPCs on acquired 
chemoresistance, we developed a chemoresistant HCT116 cell 

Figure 1.  Selection of appropriate cell models of chemoresistant CRC cells. (A) Heat map showing various cancer-associated pathways that were affected by OPCs in 

six different CRC cell lines (left). A zoomed-in illustration showing how the expression of specific ABC transporter genes was affected by OPCs in these cell lines (right). 

(B) Schematic showing the establishment of inherently chemoresistant cell line H716 by culturing cells in ascites from colorectal patient undergoing 5FU treatment. 

(C) Schematic showing the establishment of chemoresistant cell line HCT116-FOr from parental chemosensitive HCT116 cells line by culturing these with increasing 

doses of 5FU for several passages, and then serially with oxaliplatin. (D) Comparison of mRNA levels of ABC transporters in chemosensitive HCT116 cells versus 

chemoresistant HCT116-FOr and H716 cells. *P < 0.05, **P < 0.01, ***P < 0.001 compared to control treatments. 
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line, named ‘HCT116-FOr’ by maintaining HCT116 cells serially 
in increasing doses of 5FU and then in oxaliplatin for repeated 
passages for >9 months (Figure 1C). Reassuringly, as shown in 
Figure 1D, several key ABC transporters implicated for inducing 
chemoresistance (e.g. MDR1, MRP2 and ABCG1), were found 
to be overexpressed in the chemoresistant HCT116-FOr and 
H716 cells vis-à-vis chemosensitive HCT116 cells (34–37). These 
results provide a unique models to study chemoresistance, both 
in de novo and acquired settings, for evaluating the effects of 
OPCs in chemoresistant CRC.

OPCs sensitize chemoresistant CRC cells to 5FU and 
oxaliplatin

The proliferation of chemosensitive parental HCT116 cells 
significantly decreased when treated with 10  µM of 5FU 
(P  =  0.0037) or 5  µM of oxaliplatin (P  =  0.01), and reduced 
even further when combined with 100  ng/µl of OPCs (Figure 
2A, left; P  =  0.005 for OPCs + 5FU, P  =  0.013 for OPCs + Oxpt). 
However, the HCT116-FOr cells were more resistant to the 
both chemotherapeutic drugs, with their proliferation rates 
decreasing only to ~93% when treated with 5FU (P  =  0.029), 
and lowered to 59% when treated with oxaliplatin (P = 0.0018) 
(Figure 2A, middle), when compared to controls. Interestingly, 
OPCs alone effectively decreased their proliferation (6% live cells 
compared to untreated cells, P = 0.00037), and further decreased 
cell viability when combined with 5FU (P = 0.0001) or oxaliplatin 
(P  =  0.0018). Similarly, although 5FU (P  <  0.05) and oxaliplatin 
(P < 0.01) alone did not decrease cell viability in the inherently 
chemoresistant H716 cells (Figure 2A, right), combining them 
with OPCs significantly improved the sensitivity of these drugs 
in these cells (P < 0.01 for both OPCs + 5FU and OPCs + Oxpt).

We then assessed the rate of apoptosis in the cells treated 
with OPCs in combination with the both chemotherapy drugs 
to determine if programmed cell death accounted for the 
decreased cell viability observed in the cell proliferation assays. 
As expected, although parental HCT116 cells were markedly 
sensitive to individual treatment with 5FU (Figure 2B, left; 
15% apoptotic cells, P  <  0.01), oxaliplatin (20% apoptotic cells, 
P  < 0.01) and OPCs (20% apoptotic cells, P  < 0.01), a combined 
treatment comprising of OPCs together with both drugs 
significantly increased the fraction of apoptotic cells in these 
cells (33% apoptotic cells in OPCs + 5FU, P < 0.001; 38% apoptotic 
cells in OPCs + Oxpt, P < 0.01). In contrast, HCT116-FOr cells were 
relatively insensitive to 5FU and oxaliplatin when treated alone; 
however, treatment with OPCs sensitized them to both 5FU (17% 
apoptotic cells, P < 0.01; Figure 2B, middle) and oxaliplatin (24% 
apoptotic cells, P < 0.01; Figure 2B, middle). Likewise, treatment 
with OPCs led to significantly enhanced rate of apoptosis by 
5FU and oxaliplatin in inherently chemoresistant H716 cells 
(Figure 2B, right) as well. Taken together, these data suggest that 
OPCs have the ability to overcome both inherent and acquired 
chemoresistance in colon cancer cells.

OPCs downregulate ABC transporters in 
chemoresistant CRC cell lines

We next evaluated the effect of OPCs on the expression of ABC 
transporters by measuring the mRNA levels of key genes that 
were identified to be upregulated in chemoresistant HCT116-
FOr and NCI-H716 cell lines. Interestingly, the expression of 
MRP2, a gene notoriously connected with multidrug resistance 
in gastrointestinal (38), liver (39), ovarian (40–42) and several 
other cancers (43), increased in response to treatment with 
5FU or oxaliplatin in both the chemoresistant cell lines (Figure 

2C, top), but was decreased when combined with OPCs. The 
downregulation of MRP2 by OPCs was especially pronounced in 
the inherently chemoresistant H716 cells (Figure 2C, top-right; 
decreased to 10% of control treatment in 5FU + OPCs-treated cells, 
P < 0.05; decreased to 30% of untreated treatment in oxaliplatin 
+ OPCs-treated cells, P < 0.05). Similarly, the expression of MDR1, 
a transporter frequently described in relation to drug resistance 
in cancer (44–46), was also decreased to about a 10th of control 
cells when combined with 5FU (P < 0.01) or oxaliplatin (P < 0.01) 
in H716 cells. Similarly, we also observed the downregulation of 
other overexpressed ABC transporters in the chemoresistant cell 
lines HCT116-FOr and H716 such as ABCG1, ABCC3 and ABCA5 
(Figure 2C, bottom).

OPCs block ABC transporter activity in 
chemoresistant CRC cells

As OPCs decreased the overall expression of several ABC 
transporters, we next wanted to evaluate the effect of OPCs 
on the general functionality of ABC transporters. For this, 
we used a hydrophobic non-fluorescent molecule that easily 
penetrates the cell membrane, which is later broken down 
into hydrophilic fluorescent dye by cellular enzymes. Cells that 
have overactive ABC transporters are able to pump out these 
fluorescent dye molecules, resulting in low fluorescence of the 
cells. However, if the ABC transporter activity is inhibited, the 
dye molecules will be trapped inside the cells, thereby resulting 
in highly fluorescent cells (Figure 3A). When the cells were 
sorted (Figure 3B, top) and quantified (Figure 3B, bottom) based 
on their fluorescence using fluorescence-activated cell sorting, 
we observed a conspicuous shift toward higher fluorescence in 
cells treated with a combination of OPCs and the fluorescent 
dye in HCT116-FOr and H716 cell lines. Although there was 
not a noticeable difference in the high fluorescent cells in the 
chemosensitive HCT116 cells (P  <  0.05), the count of the high 
fluorescent cells increased considerably in chemoresistant cell 
lines HCT116-FOr (P  <  0.01) and H716 (P  <  0.001), suggesting 
accumulation of dye within them.

OPCs improve cellular response to 5FU and 
oxaliplatin

Next, we evaluated whether the decrease in the activity of 
ABC transporters induced by OPCs truly improved response to 
the chemotherapeutic drugs 5FU and oxaliplatin. As 5FU and 
oxaliplatin inhibit the movement of cells through the cell cycle, 
we checked the level of cell cycle arrest in cells treated with OPCs. 
As expected, co-treatment with OPCs significantly increased 
cells arrested in their S-phase in both HCT116-FOr (P < 0.001 for 
OPCs + 5FU, and for OPCs + Oxpt) and H716 cells (P < 0.01 for 
OPCs + 5FU, P < 0.001 for OPCs+ Oxpt; Figure 4A). Double-strand 
breaks, as measured by the level of phosphorylation of γH2AX 
increased in cells co-treated with OPCs and 5FU or oxaliplatin, 
further confirmed the sensitization of chemoresistant cells to 
chemo drugs by OPCs in HCT116 (P < 0.05 for OPCs + 5FU and 
OPCs + Oxpt) and H716 cells (P < 0.001 for OPCs + 5FU, P < 0.01 for 
OPCs + Oxpt; Figure 4B).

As cells undergoing DNA damage in response to 
chemotherapeutic agents respond by elevating their p53 protein 
levels (47–49), we checked levels of p53 and its target genes p21 
and PCNA as a measure of the cells responsiveness to 5FU and 
oxaliplatin. In line with our previous results, we observed an 
accumulation of p53 protein in cells treated with both OPCs 
and chemotherapeutic drugs. This was even more pronounced 
in the levels of p53-target genes, p21 and PCNA levels, which 
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did not increase when treated only with 5FU or oxaliplatin, but 
increased drastically when treated in combination with the 
OPCs (Figure 4D). These data together attest that OPCs improve 
the response of the cells to chemo drugs.

OPCs resensitize chemoresistant CRC tumor growth 
to 5FU and oxaliplatin in an animal model

We evaluated the effect of OPCs in resensitizing chemoresistant 
cancer cells in vivo to 5FU and oxaliplatin by following the 

Figure 2.  OPCs sensitize chemoresistant CRC cells to 5FU and oxaliplatin, and downregulate ABC transporters. (A) Top: Cell proliferation assay showing the effect of 

OPCs in combination with 5FU or oxaliplatin in chemosensitive HCT116 cells (left), chemoresistant cells ‘HCT116-FOr’ (middle) and NCI-H716 (right) cells. (B) Apoptosis 

in chemosensitive HCT116 cells (left), chemoresistant cells ‘HCT116-FOr’ (middle) and NCI-H716 (right) cells treated with 100 ng/µl of OPCs with or without 10 µM 5FU 

or 5 µM oxaliplatin. (C) mRNA expression levels of ABC transporter genes in parental HCT116 (left), HCT116-FOr (middle) and H716 (right) relative to β-actin levels. 

*P < 0.05, **P < 0.01, ***P < 0.001 compared to control treatments.
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tumor growth in athymic mice with subcutaneous xenografts 
of HCT116-FOr cells that were orally administered OPCs 
in combination with intraperitoneal injections of 5FU or 
oxaliplatin (Figure 5A). There was no significant change in 
the weight of the mice during the course of the treatment 

(Supplementary Figure 1, available at Carcinogenesis Online). 
Although the tumors continued to grow in mice that were 
administered 5FU or oxaliplatin alone, co-administration of 
OPCs significantly attenuated tumor growth (P < 0.05 for tumor 
volume, P < 0.05 for tumor weight for OPCs + 5FU group; P < 0.01 

Figure 3.  OPCs block ABC transporter activity in chemoresistant CRC cells. (A) A schematic of the principle of the functional detection of ABC transporter proteins: a 

non-fluorescent dye enters the cell and is converted to a fluorescent dye by intracellular esterases. The dye will be pumped out by overactive drug pumps, resulting 

in less fluorescent cells. If the drug pumps are inhibited, the dye will stay inside the cells making them more fluorescent. (B) Fluorescence-activated cell sorting-

based measurement of fluorescent cells treated with or without OPCs (top).Quantitation of the number of fluorescent cells in different treatments (bottom). *P < 0.05, 

**P < 0.01, ***P < 0.001 compared to control treatments.

http://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgy184#supplementary-data
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for tumor volume, P  <  0.05 for tumor weight for OPCs + Oxpt 
group; Figure 5A). Besides, in line with results obtained in cell 
lines, co-administration of OPCs with chemo drugs significantly 

decreased the expression of key drug transporters MRP2, MDR1, 
ABCG1, ABCC3 and ABCA5 more effectively than individually 
(Figure 5B).

Figure 4.  OPCs improve cellular response to 5FU and oxaliplatin. Effect of OPCs on (A) cell cycle arrest, (B) phosphorylation of γH2AX (top: dot plot with total H2Ax 

levels on the y-axis and phosphorylation of H2AX on the x-axis; bottom: quantification of percentage phosphorylation compared to total H2AX expression in cells), (C) 
protein levels of p53 and (D) and mRNA levels of the downstream targets of p53 (p21 and PCNA) as measures of response to 5FU and oxaliplatin. *P < 0.05, **P < 0.01, 

***P < 0.001 compared to control treatments.
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Discussion
In our previous studies, we demonstrated the tumor-suppressive 

effects of OPCs derived from grape seeds on a variety of CRC 

and cancer stem cells (7,26). In this study, we for the first time 

provide an additional layer of mechanistic evidence for the 

anticancer effects of OPCs using a series of cell lines and a 

xenograft animal model, and demonstrate that these molecules 
play a key role in overcoming chemoresistant to first-line 
chemotherapeutic drugs such as 5FU and oxaliplatin, in CRC. 
Furthermore, we illustrate that these chemosensitizing effects 
of OPCs are mediated through the downregulation of several 
ABC transporters, which have long been known to play a causal 
role in the development of chemoresistance in cancer. We 

Figure 5.  OPCs resensitize chemoresistant CRC tumor growth to 5FU and oxaliplatin in vivo. (A) Progressive tumor volume in mice orally gavaged with OPCs, individually 

and in combination with intraperitoneal administration of 5FU or oxaliplatin (top). Inset: Representative images of mice with subcutaneous tumors 6 weeks after 

administering orally with OPCs alone or in combination with intraperitoneal administration of 5FU or oxaliplatin. Xenograft tumors collected from killed mice at the 

end of the 6-week treatments (bottom). Quantification of tumor weights from different treatment groups (right). (B) qPCR analysis of mRNA levels of ABC transporter 

genes normalized to control group. *P < 0.05, **P < 0.01, ***P < 0.001 compared to control treatments. (C) Illustration of the mechanism by which OPCs resensitize 

chemoresistant cancer cells to chemo drugs.
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demonstrate that OPCs block the activity of ABC transporters in 
chemoresistant cancer cells and facilitate resensitization of CRC 
cells to these drugs in cultured cells as well as in animal models.

Several tumors frequently overexpress multiple ABC 
transporters, which possess overlapping functions and substrates 
(50–52). ABC transporter activity is a crucial consideration when 
designing drugs as they greatly affect the pharmacokinetics and 
efficacy of all drugs, especially anticancer chemotherapeutic 
drugs (53). Pharmacologic inhibition or blocking the activity of 
a singular ABC transporter is not as effective, as the collective 
suppression of multiple ABC transporters. Studies have elegantly 
shown that blocking the activity of just two transporters, ABCG2 
and MDR1, increased drug accumulation by 43-fold compared 
to knocking down either of these transporters individually (54). 
In this study, we showed the ability of OPCs to simultaneously 
block multiple efflux pathways, and hence markedly increase the 
efficacy of conventional cytotoxic chemotherapeutic drugs used 
as first-line treatments in patients with CRC. Our data suggest 
that suppression of a broad spectrum of ABC transporters 
is quite promising in reversing chemoresistance to a variety 
of chemo drugs, a concept that merits further validation and 
continued exploration. In addition, such an approach is not only 
beneficial in a preventive setting for minimizing development of 
chemoresistance in cancer but also provides an avenue to target 
preexisting chemoresistant cells by resensitizing them to the 
effects of such drugs owing to their increased dependency on 
the expression of ABC transporters.

In summary, we demonstrate that OPCs can reverse 
chemoresistance in refractory CRC by suppressing multiple 
ABC transporters. In addition to validating our results in cell 
lines, we also validated the sensitizing effects in an animal 
model. Therefore, as OPCs block various ABC transporters, it 
could prevent the emergence of acquired resistance in cancer 
patients undergoing targeted therapies. Taken together, our 
findings lay a platform for their use as adjunctive treatments in 
patients with CRC, based upon the premise that these are safe 
and inexpensive, and have the ability to target multiple cellular 
pathways involved in inducing chemoresistance in colorectal 
and possibly other cancers.
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