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A B S T R A C T

The avian coronavirus causes infectious bronchitis (IB), which is one of the most serious diseases affecting the
avian industry worldwide. However, there are no effective strategies for controlling the IB virus (IBV) at present.
Therefore, development of novel antiviral treatment strategies is urgently required. As reported, astragalus
polysaccharides (APS) have potential antiviral effects against several viruses; however, the antiviral effect of APS
against IBV remains unclear. In this study, we explored whether APS had the potential to inhibit IBV infectionby
utilizing several in vitro experimental approaches. To this end, the effect of APS on the replication of IBV was
examined in chicken embryo kidney (CEK) cells. Viral titers were calculated by using the plaque formation assay,
and the cytotoxicity of APS was tested by utilizing a Cell Counting Kit-8 assay. The expression of viral mRNA and
cytokine (IL-1β, IL-6, IL-8 and TNF-α) mRNA transcripts was determined by real-time quantitative RT-PCR(qRT-
PCR). IBV titers in infected CEK cells treated with APS were significantly reduced in a dose-dependent manner,
indicating that APS inhibited IBV replication in vitro. We also found that the decreased viral replication after APS
treatment was associated with reduced mRNA levels of the cytokines IL-1B, IL-6, IL-8 and TNF-α. In conclusion,
these results suggest that APS exhibit antiviral activities against IBV and it may represent a potential therapeutic
agent for inhibiting the replication of IBV.

1. Introduction

Avian infectious bronchitis virus (IBV), a member of the
Coronaviridae family, causes mild-to-acute respiratory disease in
chickens and leads to huge economic lossesin the poultry industry
worldwide [1,2]. More than 50 serotypes of IBV have been documented
since the first virus was isolated from birds exhibiting respiratory
symptoms in the United States in 1931 [3]. Extensive genetic diversity
of IBV strains worldwide renders vaccines largely ineffective, because
of poor or no cross-protection between different IBV serotypes [4,5].
Thus, finding an effective antiviral drug or agent is imperative for the
prevention of IBV infection.

The Chinese government has prohibited the use of antiviral drugs in
food animals in China; thus, utilization of traditional antiviral herbs
remains a major focus. Several reports have confirmed that traditional
Chinese herbs effectively inhibit the replication of various viruses
[6–8]. Astragalus polysaccharides (APS), isolated from a traditional

Chinese medicinal herb, Astragalus mongholicus, have been widely used
immunopotentiators [9–11]. Recently, several studies have shown that
supplementation with APS can inhibit replication of several animal
viruses, including H9N2 avian influenza virus [12], foot and mouth
disease virus [13], Newcastle disease virus [14], and infectious bursal
disease virus [15]. However, the effect of APS on IBV replication re-
mains unclear. Therefore, in this study, we investigated the antiviral
effects ofAPS against IBV by utilizing several in vitro approaches.

2. Materials and methods

2.1. Virus, cells, and APS

The IBV strain M41 (China Institute of Veterinary Drug Control) was
adapted and propagated in chicken embryo kidney (CEK) cells. The CEK
cell monolayerswere maintained in Dulbecco's modified Eagle's
medium (DMEM, Gibco, USA) supplemented with 10% fetal bovine
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serum (FBS; HyClone, Logan, UT, USA), 100 units/mL penicillin,
100 μg/ml streptomycin, and 2 mM L-glutamine in a humidified
chamber, supplemented with 5% CO2, at 37 °C.

APS (net content, 95.9%) brought from Sihai Plant Extracts Co., Ltd
(Nantong, China)were dissolved in deionized water and diluted to
1,5,10, 20, 30, and 50 μg/ml. The APS solution was sterilized by heat
treatment (100 °C for 30 min), and then stored at −4 °C until use.

2.2. Cytotoxicity assay

Cytotoxicity was determined by using a Cell Counting Kit-8 (CCK8;
Donjindo, Japan) according to the manufacturer's instructions. Briefly,
the CEK cells were seeded into96-well culture plates, at a density of
1 × 104 cells/well, and incubated at 37 °C in a 5% CO2 incubator for
24 h. After washing with PBS, three times, APS at various concentra-
tions (1, 5, 10, 20, 30, or 50 μg/mL) were added to the wells. The cells
were then cultured for a further 48 h. Mock-treated cells served as
controls. After washing with PBS, the CEK cells were incubated with
CCK8 solution at 37 °C for 4 h. Absorbance was measured at 450 nm by
using a QuantUniversal Microplate Spectrophotometer (BioTek
Instruments, Inc., Winooski, VT, USA). The relative cell viability rate
was determined for each concentration based on the following formula:
(OD450 drug)/(OD450 control) × 100%. APS concentrations below the
50% cytostatic concentration (CC50) were defined as non-toxic con-
centrations [16].

2.3. Virus titration and infection

To calculate viral titers (infectivity), a plaque-formation assay was
performed. Briefly, 2 × 105 CEK cells seeded into 24 wells tissue cul-
ture dishes were grown until 100% confluence, and then inoculated
with serially diluted IBV (10−1-10−6). Subsequently, overlay medium
(1% low-melting-point agarose with DMEM containing 10% FBS) was
added to each well and further incubated at 37 °C, 5% CO2, for 72 h.
The cells were subsequently stained with gentian violet (1% crystal
violet, 10% formaldehyde and 5% EtOH in PBS). The virus titer was
determined by counting the number of plaques formed at a specific
dilution, as described by Dove et al. [17].

2.4. Treatment of infected cells with APS

To analyze the effect of APS on infected cells, CEK cell monolayers
were infected with IBV at 2 × 106 plaque-forming units/ml, and sub-
sequently incubated at 37 °C for 1 h. Cell monolayers were then washed
three times with PBS, and the infected cells were treated with various
concentrations of APS (1,5,10,20, or 30 μg/mL). Mock cells and in-
fected cells represented negative and positive controls, respectively.
After 24 h, CEK cell lysates were prepared for subsequent plaque assays.

2.5. Real time quantitative RT- PCR (qRT-PCR)

Genomic and subgenomic RNA levels of IBV in mock and virus-in-
fected CEK cells treated with different concentration of APS were
quantified by TaqMan real-time RT-PCR as described previously [18].

To quantify the expression of cytokines (IL-1β, IL-6, IL-8 and TNF-α),
total RNA was extracted from cultured cells using Trizol reagent
(Takara Biotechnology, Dalian, China) according to the manufacturer's
instructions. Total RNA purity and concentration were measured by
using ultraviolet spectrophotometry (Life Technologies, Carlsbad, CA,
USA). The isolated RNA was digested with DNase1 (Takara
Biotechnology, Dalian, China) at 37 °C for 30 min cDNA was synthe-
sized from total RNA using a PrimeScript RT Reagent Kit (TaKaRa).
Amplifications were performed with 0.5 μL cDNA, ina total volume of
10 μL, using SYBR Green Real-Time PCR MasterMix (Roche, Mortlake,
Australia), in a 7900HT Fast Real-Time PCR System (Applied
Biosystems, Shanghai, China), according to the manufacturer's

instruction. The primers for cytokine genes and GAPDH used in this
study are listed in Table 1. Cytokine gene expression was normalized to
that of GAPDH using the2−ΔΔCt method.

2.6. Western blots

Total protein was extracted from cultured CEK cells using a mod-
ified radioimmunoprecipitation assay buffer supplemented with pro-
tease inhibitor cocktail (Beyotime, Shanghai, China). Protein con-
centrations were determined using a BCA protein assay kit (Pierce,
Rockford, IL,USA). Equal amounts of protein were separated on a 10%
SDS polyacrylamide gel and electro-transferred from the gel to a
polyvinylidene fluoride (PVDF) membrane (Amersham Bioscience,
USA). After blocking with 5% non-fat milk in PBS, the membrane was
probed with chicken anti-nucleocapsid polyclonal antibody (diluted
1:1000) and chicken anti-GAPDH polyclonal antibody (diluted 1:5000)
overnight, followed by incubation with horseradish peroxidase-con-
jugated secondary antibodies for 1 h at room temperature. GAPDH was
used as the internal loading control. The protein bands were detected
using a chemiluminescent substrate kit (Millipore Company, Bedford,
MA, USA), according to the manufacturer's instructions.

2.7. Statistical analyses

All results are represented as mean ± standard deviation (SD) from
at least three independent experiments. All statistical analysis was
performed using SPSS 19 software package (SPSS Inc; Chicago, IL,
USA). One-way ANOVA with Bonferroni'spost-hoc tests were performed
to compare the differences among three or more groups. Differences
were considered significant at ??< 0.05.

3. Results

3.1. The cytotoxic effect of APS on CEK cell proliferation

To investigate whether APS treatment affects cell viability, the
toxicity of APS onCEK cells was determined using the CCK8 method. At
concentrations of 5 μg/ml and 10 μg/ml, only 12.1% and 18.3% of CEK
cells were killed after 48 h, respectively (Fig. 1). At 30 μg/ml, APS
killed 47.6% of cells, whereas the viability was below 50% after
treatment with APS at 50 μg/ml. These results indicate that APS did not
influence cell viability at concentrations below 30 μg/ml, and therefore
this concentration was chosen as the maximum concentration of APS
for the antiviral assays.

3.2. APS inhibit IBV replication in vitro

The antiviral activity of APS against IBV was determined by plaque
formation assay. As showed in Fig. 2A, virus titers significantly de-
creased in infected CEK cells treated with APS, in a dose-dependent

Table 1
Real time PCR primers used for mRNA expression analysis.

Target gene Prime (5′-3′)

IL-1β F-GGGCATCAAGGGCTACAA
R-CTGTCCAGGCGGTAGAAGAT

IL-6 F-AGAAATCCCTCCTCGCCAAT
R-AAATAGCGAACGGCCCTCA

IL-8 F-GCCCTCCTCCTGGTTTCAG
R-TGGCACCGCAGCTCATT

IFNa F-GACAGCCAACGCCAAAGC
R-GTCGCTGCTGTCCAAGCATT

GAPDH F-TGCCAACGTGTCGGTTGT
R-TGTCATCATATTTGGCAGGTTT

Abbreviations: F, forward; mRNA, messenger RNA; PCR, polymerase chain re-
action; R, reverse.
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manner.
To further confirm the inhibitory effect of APS, real-time qRT-PCR

was performed to measure IBV genomic and subgenomic RNA levels in
mock and virus-infected CEK cells treated with different concentrations
of APS. Genomic RNA (5′ UTR sets) and subgenomic mRNA (3′ UTR
sets) expression was downregulated in infected CEK cells treated with
APS in a dose-dependent manner (Fig. 2B and C). These data indicate
that infected CEK cells treated with APS exhibit an overall reduction in
viral RNA levels.

3.3. APS treatment decreases N protein in infected CEK cells in a dose-
dependent manner

To determine the effect of APS on virus protein production, the
amount of nucleocapsid (N) protein of IBV was determined by western
blot. N protein is one of the most abundantly expressed viralproteins in
an IBV-infected cell and has a high affinity for viral RNA [19]. Quan-
titation of N protein levels is a sensitive marker for viral protein pro-
duction [19]. In this study, we found that N protein expression de-
creased in infected CEK cells treated with APS in a dose-dependent
manner (Fig. 3), suggesting that APS can inhibit IBV replication.

3.4. APS regulate the mRNA expression of cytokines

We next determined whether treatment of CEK cells with 30 μg/mL
of APS affected the expression of cytokines induced by IBV infection.
APS treatment significantly reduced the mRNA levels of IL-1β, IL-6, IL-
8, and TNF-α, which were upregulated by IBV infection at 15, 18, and
24 h, compared to those of mock-treated groups (Fig. 4A–D). These data
demonstrate that APS inhibited inflammatory responses in IBV-infected

CEK cells by decreasing the expression of pro-inflammatory cytokines.

4. Discussion

At present, multiple serotypes of IBV exist, and new variants reg-
ularly emerge due to frequent point mutations and recombination
events in the viral genome [20], which ultimately leads to vaccine
failure. Therefore, development of an effective antiviral therapy is a
crucial strategy for treating IBV infection. Here, we showed that
treatment of CEK cells with APS at 30 μg/mL or less did not induce
significant toxicity. Furthermore, inhibition of IBV replication in CEK
cells by APS occurred in a dose-dependent manner in vitro. Hence, APS
have potential utility as antiviral agents against IBV.

APS, active ingredients extracted from Astragalus, possess a wide
range of medicinal benefits, such as immunomodulatory [9–11], anti-
oxidant [21], antidiabetic [22], antitumor [23], and anti-inflammatory

Fig. 1. The cytotoxic effect of APS treatment on CEK cells. CEK cells were treated with
0,1, 5, 10, 20, 30, or 50 μg/mL of APS for 48 h. Relative cell viability was determined by
the CCK8 assay and normalized to the value of the 0 group (set at 100%).

Fig. 2. APS inhibits IBV production. A. CEK cells were infected with IBV before treatment with different concentrations of APS(0,1, 5, 10, 20, or 30 μg/mL) for 24 h. Viral titers in
supernatants were determined by the plaque formation assay and normalized to the value of the 0 group (set at 100%). B,C. Real-time qRT-PCR analysis of the levels of IBV genomic RNA
as well as genomic and subgenomic mRNAs, asdetermined by analysis of the IBV 5′ UTR (B) and 3′UTR (C) in infected CEK cells following APS treatment. The differences between means
were considered significant at *P < 0.05 and highly significant at **P < 0.01 when compared with the control groups (i.e. APS concentration, 0).

Fig. 3. APS treatment reduces N protein expression in IBV-infected CEK cells in a dose-
dependent manner. Western blots were utilized to analyze the levels of N protein in in-
fected CEK cells treated with different concentrations of APS. The differences between
means were considered significant at *P < 0.05 and highly significant at **P < 0.01
when compared with the control groups (i.e. APS concentration, 0).
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effects [24]. Recent studies have shown that APS have an antiviral ef-
fect on several viruses [9–15], suggesting that APS have the potential to
be developed and used as antiviral drugs. Our group recently reported
that APS could be used as an adjuvants in IBV vaccine preparations, and
provide better protection against IBV by stimulating both humoral
andcellular immunity [25]. However, it remains unclear whether APS
had a direct inhibitory effect on IBV. In this study, we found that APS
could inhibit IBV replication, in vitro, in a dose-dependent manner. In
addition, APS also regulated cytokine expression during IBV infection.
These results suggested that APS could inhibit IBV replication.

It is well known that pro-inflammatory cytokines play a crucial role
in avian respiratory disease progression, by coordinating and activating
the adaptive immune response, which enables the host to eliminate
pathogens [26]. Nii et al. reported that the expression of pro-in-
flammatory cytokines was higher in the IBV-infected group than in the
uninfected control group, suggesting that pro-inflammatory cytokines
were involved in IBV progression [27]. Several reports have shown that
APS could regulate cytokine expression in various diseases. For ex-
ample, Lv et al. found that treatment with APS significantly reduced
mRNA expression of TNF-α, IL-6 and IL-1β in colon tissues of mice with
colitis [28]. Wang et al. reported that administration of APS sig-
nificantly downregulated the expression of TNF-α, IL-1β, and IL-8
(P < 0.05) in LPS-treated Caco2 cells [24]. In our study, we also found
that TNF-α, IL-1β, IL-6, and IL-8 mRNA expression was significantly
downregulated following treatment of IBV-infected cells with APS,
suggesting that APS moderate IBV-induced inflammatory responses
associated with viralreplication.

In summary, the present study was the first to show that APS inhibit
IBV infection, in vitro, in a dose-dependent manner. Furthermore, lower
viral replication after APS treatment was associated with reduced
mRNA levels of the pro-inflammatory cytokines IL-1β, IL-6, IL-8, and
TNF-α. These data suggest the potential use of APS as antiviral agents
against IBV; however, further studies are required to elucidate their
mechanism of action, which remains unclear.
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