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Abstract: Willow bark is a byproduct from forestry and is obtained at an industrial scale. We
upcycled this byproduct in a two-step procedure into sustainable electrode materials for symmetrical
supercapacitors using organic electrolytes. The procedure employed precarbonization followed by
carbonization using different types of KOH activation protocols. The obtained electrode materials
had a hierarchically organized pore structure and featured a high specific surface area (>2500 m2 g−1)
and pore volume (up to 1.48 cm3 g−1). The assembled supercapacitors exhibited capacitances up to
147 F g−1 in organic electrolytes concomitant with excellent cycling performance over 10,000 cycles at
0.6 A g−1 using coin cells. The best materials exhibited a capacity retention of 75% when changing
scan rates from 2 to 100 mV s−1.

Keywords: willow bark; upcycling; carbon activation; electrode formation; supercapacitors;
organic electrolytes

1. Introduction

The forestry industry is one of the most prominent worldwide operating sectors with annual
turnovers in the range of tens of billions of euros. While there are many areas where wood is
commercially used in large-scale industries (e.g. furniture, construction, pulp and paper, etc.), some
of the waste and byproducts do not have any major application at present. One of these remaining
materials is bark, which is mostly used for incineration. Therefore, research has focused on using bark
to produce chemicals like acetic acid [1] or biobased oils [2]. Others investigated the fire resistance of
bark in dependence of the water content and the thickness of the bark [3,4]. This was also implemented
in developing a fire-resistant composite on the basis of suberin and lignin for wooden construction
materials [5]. An overview of existing bark applications was recently provided by Pásztory et al. [6].

The development of energy storage and conversion technologies is a key challenge to address
climate change and its associated negative impact on the environment, society and economy.

Electrical double-layer capacitors (EDLCs), are a major storage technology and have a different
working principle than batteries, as the energy is purely physically stored in an electrical double layer
at the carbon–electrolyte interface. As charging and discharging do not cause any stress on the bulk
material, these supercapacitors (SCs) have much higher cycling stability than batteries. The absence
of slow intercalation-type chemical reactions also allows for faster charge/discharge compared to
batteries, resulting in large power densities. In principle, the physical storage mechanism makes SCs
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less sensitive to temperature extremes, particularly compared to lithium-ion batteries. A disadvantage
of the capacitive storage mechanism in SCs is the relatively low energy density compared to batteries.
Efficient energy management relies on the complementary use of batteries and supercapacitors in
the future to cover the whole range of energy densities, power densities and charging/discharging
times [7–9].

Many SC systems employ aqueous electrolytes such as H2SO4 and KOH. These are cheap and
available, but have two intrinsic disadvantages: they are corrosive and the operating voltage is limited
to the decomposition of water (1.2 V). In contrast to commercial SC materials, biomass-derived carbons
have not been fully investigated with organic electrolytes. Organic electrolytes are not corrosive
to the casing and have a larger operating voltage than aqueous electrolytes. SCs mostly employ
activated carbon electrodes with high specific surface areas and a large fraction of micropores (pores
< 2 nm) to achieve highest capacitances. Ideally, these carbons also feature a hierarchical pore size
distribution to allow for optimum ion transport and SC rate performance. As a source of the activated
carbons, biomass precursors are often used. Examples include specialties (e.g., nanocellulose) and mass
products (e.g., paper, textile fibers), as well as waste materials from biorefineries or agriculture [10–12].
A comprehensive review covering the literature on the use of polysaccharides as source for these
materials showed that there is still large potential for valorizing waste materials into high-performance
electrode materials [13].

Bark and its extracts have also been tested for supercapacitor assembly, using the hierarchical
structure of bark for carbonization and activation [14–17]. Several activating agents (KOH, H2SO4,
NaOH, H3PO4 and ZnCl2) have been applied so far for the activation of biowaste materials [18], with
the main focus now being placed on KOH, which has been proven to be the most promising one for
bark [19]. The accessibility of nanopores for the electrolyte is of utmost importance. A 1:2 ratio of
bark:KOH revealed the highest capacitances during the assembly of aqueous supercapacitors [15,17].

In the present work, we chose willow as a typical representative of western wood, with more than
500 species distributed all over the world. Its high abundance makes it one of the most processed wood
species in the world for the pulping process, which allows it to be harvested directly after debarking
without any further purification steps. Some of us have already developed a procedure to obtain
high-surface-area activated carbons from non-purified willow wood for use in aqueous electrolyte
supercapacitors [20]. The performance was excellent for aqueous-based systems but has intrinsic
limitations in terms of energy density and operating voltage. The scope of this work is to extend the
knowledge from earlier studies and investigate the potential of willow bark as an electrode material
for supercapacitors using organic electrolytes.

2. Materials and Methods

2.1. Materials

The willow bark (WB) used in this study was a one-year-old willow hybrid “Klara”, harvested
from the plantation of Carbons Finland Oy. HCl and KOH were purchased from VWR (Radnor, PA,
USA). (ARKEMA, Colombes, France) and Super P carbon black (Timcal, Bodio, Switzerland) were
used for the electrode formation. Acetonitrile (ACN, 99.9%, Sigma-Aldrich, St. Louis, MO, USA),
tetraethylammonium tetrafluoroborate salt (TEABF4, 99%, Alfa Aesar, Haverhill, MA, USA) and glass
microfiber filters (separator, from Whatman, Maidstone, UK) were used for battery assembly.

2.2. Preparation

The willow was debarked immediately after harvesting. The dried willow bark was ground into
powder using a Wiley mill, to an average particle size of 500 µm. Carbonization was accomplished
using a two-step method. The schematic preparation of the willow-bark-derived activated carbon is
shown in Figure 1. In the first step, the WB was pre-carbonized at 600 ◦C for 1 h at a heating rate of
5 ◦C min−1 under nitrogen flow, followed by a thorough washing with water and drying in the oven at
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105 ◦C. In the second step for activation, KOH was dissolved in about 20 mL of deionized water and
thoroughly mixed with the dried pre-carbonized carbon in various KOH/C mass ratios of 0, 1, 5 and
9. The samples were then activated at 800 ◦C for 1 h at a heating rate of 5 ◦C min−1 under nitrogen
flow and allowed to cool down to room temperature naturally. After carbonization, the samples were
thoroughly washed with 1 M HCl and subsequently with deionized H2O until neutral pH was reached.
The powders were then dried at 105 ◦C for at least 24 h. The resulting activated carbon samples are
designated as B0, B1, B5 and B9 with the numeration corresponding to the KOH/C ratios.

2.3. Electrode Preparation

The samples were hand milled, 10 wt. % PTFE and 10 wt. % Super P were added and a dough
was formed in isopropanol. This dough was rolled out and dried overnight. Electrodes were stamped,
weighed and vacuum-dried with an average loading of 4 mg cm−2.

2.4. Material Characterization

2.4.1. Evaluation of Accessible Surface Area

Pore volume and surface area were determined by nitrogen gas adsorption at 77 K using a
Micromeritics Tristar II apparatus (Micromeritics, Unterschleißheim, Germany). Specific surface
areas were obtained using the BET method. BET areas typically overestimate absolute values of
the specific surface area in microporous carbons, but reliably characterize their relative order. Pore
size distributions of the investigated carbons were again generated by the BJH method [21]. X-ray
photoelectron spectroscopy (XPS) was conducted using a Kratos Axis Ultra ESCA system (Kratos,
Manchester, UK) with a monochromatic Al Kα source.

2.4.2. Scanning Electron Microscopy

The scanning electron microscopy images were analyzed with a Zeiss Sigma VP (Zeiss, Jena,
Germany) at 5 kV acceleration voltage using a SE2 detector. The samples were sputtered with platinum
to form a conducting film prior to SEM measurements.

2.4.3. Cell Preparation

The cells were assembled using a Swagelok-type three-electrode test cell (Swagelok, Solon, OH,
USA) with partially delithiated Li1-xFePO4 as the reference electrode and two symmetrical activated
carbon electrodes as counter and working electrode with a separator in-between, and soaked with 80
µL electrolyte solution (1 M TEABF4 in ACN). The coin cell consisted of the two symmetrical activated
carbon electrodes and the same separator; everything was soaked with 80 µL of electrolyte solution.
All cells were assembled in the glove box, avoiding moisture and oxygen.

All electrochemical cells were characterized by a Biologic MPG-2 potentiostat (BioLogic,
Seyssinet-Pariset, France) at ambient temperature. Cyclic voltammetry and galvanostatic cycling
experiments were conducted at ambient temperature in the Swagelok-type 3-electrode. Cyclic
voltammetry (CV) as well as galvanostatic charging–discharging (GCD) measurements were performed
between 0 and 2.3 V. The scan rate varied from 2 to 100 mV s−1 and the current density from ~0.1 to 6
A g−1 per mass of active material in the cell. Long-term cycling was carried out in a coin cell at 0.6 A
g−1 of the active material in the cell over 10,000 cycles between 0 and 1.4 V. Cyclic voltammetry was
used to determine the capacitance according to Equation (1):

CS,Electrode = 2 ·

∫ V f
Vi

i · dV

∆V · v · m
. (1)

The specific capacitance Cs of one electrode was determined by the integral of the CV curve,
limited by Vf and Vi of the cell voltage ∆V, scan rate v and the mass of the active material m in the cell.
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The supercapacitors’ rate-handling capability was tested by galvanostatic cycling at current
densities ranging from 0.3 to 4 A g–1. The specific capacitance (F g−1) was calculated via Equation (2)
with a shift in the current density ascribed to variations in the loading [22].

CS,Electrode = 4 ·
I · ∆t

∆V ·m
(2)

where I is the applied current, ∆t the time for full discharge, ∆V the cell voltage and m the total mass
of both electrodes.

3. Results and Discussion

3.1. Activation and Material Characterization

The dried and milled willow bark chips were converted into activated carbons at 800 ◦C. We used
KOH as the activation agent, which was added in different ratios (1:0, 1:1, 1:5, 1:9, wt. bark: wt. KOH,
samples denoted as B0, B1, B5, B9 in the following) to the milled bark. Specific surface area and pore
volume increased with larger amounts of KOH used for activation, as previously reported. At the
lowest KOH concentrations (B1), we obtained specific surface areas of 933 m2 g−1, which increased to
1584 m2 g−1 (B5) and 2564 m2 g−1 for B9. This sample also featured the highest pore volume with 1.48
cm3 g−1 (Figure 1).
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Figure 1. (a) Nitrogen physisorption isotherms and (b) corresponding pore size distribution for the
willow bark and all three activated samples.

The morphology of the samples investigated via SEM reflected the results from BET, observing
porous structures for all samples (B0–B9). However, a distinct transition from less-altered structures (B0,
B1) to honeycomb-like structures was observed as soon as the bark:KOH ratio reached 1:5 (Figure 2—B5,
B9). The porosity of the samples increased with the KOH concentration, showing the largest pores for
B5. This structure was also retained for B9, but the pore size decreased. Consequently, B9 revealed the
biggest surface area of all samples. At higher magnification, the pore system could be evaluated in
more detail. The pores were larger in the case of B5 (several hundreds of nanometers) than for B9,
where a hierarchical structure could also be observed.
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Figure 2. Scanning electron microscopy images of B0, B1, B5 and B9.

The XPS data gave evidence of carbonization between the different samples (Figure 3). The
carbonized barks featured carbon content from 70 at % (B1) to a nearly 90 at % C (B9), as obtained from
evaluation of the C1s peak (283 eV). At the same time, oxygen levels were lowest for the variations
in the oxygen content (O1s, 531 eV) and revealed the lowest amount for B9 (9 at %). Although the
carbonization conditions were consistent, the composition was drastically different, indicating a great
impact on the electrochemical properties of the materials.
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3.2. Supercapacitor

The supercapacitors were investigated in a two- and three-electrode configuration using standard
electrochemical methods such as impedance spectroscopy, cyclic voltammetry and galvanostatic
charge/discharge. Electrochemical impedance spectroscopy revealed similarities for all materials with
a slightly more distinct capacitive behavior for B9. A lower resistance and higher charge transfer
resistivity (Figure 4a) was observed. The rectangular shape was typical for EDLCs and their capacitive
energy storage (Figure 4b), and yielded 70, 72 and 147 F g−1 for B1, B5 and B9, respectively, at a cycling
rate of 1 mV s−1. The lower current densities of B1 and B5 reflected the lower specific capacitances
and indicated limitations for the use as supercapacitor electrodes. This was further illustrated by the
decreasing current densities at higher cell voltages.
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Figure 4. Electrochemical properties of all three manufactured activated willow bark samples,
investigating (a) the impedance, (b) cyclic voltammetry (1 mV s−1), (c) associated capacitance retention
and (d) a galvanostatic cycle at 1.5 mA.

The capacitance retention during a scan rate increase from 1 to 100 mV s−1 (Figure 4c) was
lower for B1 and B5 (~54%) than for B9 (75%). Galvanostatic charge/discharge cycles demonstrated
the characteristic triangular shape at 1.5 mA. This was associated with rising/falling potentials at
turning points changing from charging to discharging and reverse (Figure 4d). The most significant
characteristics for an SC electrode material are cyclability, rate handling capability and specific
capacitance. For this purpose, the SCs were assembled in coin cells and cycled over 10,000 times at
0.6 A g–1. All materials showed high cycling stability (Figure 5a). B1 and B5 retained over 97% and
95% capacity, respectively, after 10,000 cycles. For B9, capacitance even increased about 8% over the
first 1000 cycles, retaining 105% after 10,000 cycles. We speculate that surface reorientation during the
first cycles led to enhanced accessibility of nanopores during cycling, thereby increasing capacitance.
The hierarchical pore structure ensured short diffusion pathways into the bulk carbon material (SEM
images, Figure 2), leading to reasonably good rate performances for all carbons (Figure 5b). The high
specific capacitance of B9, caused by the large volume of micropores and the high specific surface area,
was largely maintained, even at high specific currents.
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3.3. Comparison with Other Biobased Supercapacitor Electrodes

Compared to other biobased materials in the literature, the reported activated willow bark in
organic electrolytes performed excellently (Table 1). To the best of our knowledge, Wei et al. reported
the highest capacitance for organic electrolytes with 236 F g−1 at 1 mV s−1 by a rather simple formation
of hydrochar [23]. Electrode mass was not mentioned in that paper, although it may have had an
impact on the performance of the supercapacitor [24]. Generally, higher electrode mass reduced the
specific capacitance [10,11], while slower cycling rates increased the capacitance [25]. Based on the
lower usable voltage window, aqueous electrolytes revealed generally lower specific energy than
organic electrolytes. In the case of willow, the organic electrolyte (bark) outperformed the aqueous
systems (wood) significantly (energy density, normalized by carbon mass—101 vs. 22 Wh kg−1 at a
power density of 1000 W kg−1 for 1 M TEABF4/acetonitrile and 1 M aqueous Na2SO4, respectively) [20].
An overview is shown in Table 1.

Table 1. Overview of biomaterials tested as supercapacitor electrodes. ACN: acetonitrile, PC:
propylene carbonate.

Carbon Source Capacitance (F g−1) Cycling Rate Electrode Mass (mg cm−2) Solvent Reference

Cellulose, starch, eucalyptus wood 236 1 mV s−1 - ACN [23]

Herbaceous biomass waste 127 0.5 mA cm−2 11 ACN [10]

Wood sawdust and tannic acid 140 0.2 A g−1 9–11 ACN [11]

Birch wood sawdust 160 0.01 A g−1 4 ACN [25]

Sucrose 120 1 A g−1 1.5–3 ACN [12]

Leonardite fulvic acid 170 0.05 A g−1 - PC [26]

Carbon microfibers 172 1 A g−1 3 ACN [27]

Willow bark 147 1 mV s−1 4 ACN This work

Willow wood 394 1 A g−1 1.5–2 Aqu. [20]

4. Conclusions

We demonstrated that willow bark that was directly harvested at the manufacturing site could
be used as starting material for the controlled synthesis of activated carbons. A prerequisite was the
use of large amounts of KOH for activation to realize large surface area (>2500 m2 g−1) and a pore
size distribution that was ideal for energy storage devices. Samples with such properties yielded
supercapacitors with high capacitances (147 F g−1 at 1 mV s−1) and extraordinary capacitance retentions
of 75% from 1 to 100 mV s−1. Galvanostatic cycling confirmed the excellent electrochemical properties.
A large volume of micropores (and a large specific surface area) was responsible for the high specific
capacitance. An ideal hierarchical pore structure permitted efficient ion transport and enabled the
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good rate handling capability of the material. Furthermore, capacitance retention was subsequently
evaluated, obtaining an increase in capacitance of about 5% of the initial capacitance for the sample
with the highest surface area (B9).
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