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Background: Senescence is a tumor suppressor mechanism activated in stressed cells to prevent replication of
damagedDNA. Senescent cells have been demonstrated to play a causal role in driving aging and age-related dis-
eases using genetic and pharmacologic approaches. We previously demonstrated that the combination of
dasatinib and the flavonoid quercetin is a potent senolytic improving numerous age-related conditions including
frailty, osteoporosis and cardiovascular disease. The goal of this study was to identify flavonoids with more po-
tent senolytic activity.
Methods: A panel of flavonoid polyphenols was screened for senolytic activity using senescent murine and
human fibroblasts, driven by oxidative and genotoxic stress, respectively. The top senotherapeutic flavonoid
was tested in mice modeling a progeroid syndrome carrying a p16INK4a-luciferase reporter and aged wild-type
mice to determine the effects of fisetin on senescence markers, age-related histopathology, disease markers,
health span and lifespan. Human adipose tissue explants were used to determine if results translated.
Findings: Of the 10 flavonoids tested, fisetin was the most potent senolytic. Acute or intermittent treatment of
progeroid and old mice with fisetin reduced senescence markers in multiple tissues, consistent with a hit-and-
run senolytic mechanism. Fisetin reduced senescence in a subset of cells in murine and human adipose tissue,
demonstrating cell-type specificity. Administration of fisetin to wild-typemice late in life restored tissue homeo-
stasis, reduced age-related pathology, and extended median and maximum lifespan.
Interpretation: The natural product fisetin has senotherapeutic activity in mice and in human tissues. Late life in-
tervention was sufficient to yield a potent health benefit. These characteristics suggest the feasibility to transla-
tion to human clinical studies.
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1. Introduction

Pharmacologically targeting fundamental mechanisms of aging is
anticipated to reduce the severity or delay the onset of multiple age-
associated co-morbidities simultaneously [5–7]. One key mechanism
demonstrated to drive aging is cellular senescence, whereby accumula-
tion of DNA damage and/or other cellular stressors [1–4] cause prolifer-
ating [8,9] or terminally differentiated non-dividing cells [10–13] to
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in Context

Evidence before this study

Pharmacological targeting of fundamental mechanisms of aging
has the ability to reduce the severity or delay the onset of multiple
age-associated co-morbidities simultaneously. One key mecha-
nism demonstrated to drive aging is cellular senescence, whereby
accumulation of DNA damage and/or other cellular stressors
cause proliferating or terminally differentiated non-dividing cells
to enter a state characterized by profound chromatin and
secretome changes, increased expression of the cell cycle inhibi-
tor p16Ink4a in many but not all senescent cells, replicative arrest,
and resistance to apoptosis. Senescent cells can develop a
senescence-associated secretory phenotype (SASP), which has
deleterious paracrine and systemic effects. Senescent cells are
rare in young individuals, but increasewith age inmultiple tissues.
Drugs able to selectively kill senescent cells, termed senolytics,
have been identified including the combination of dastinib and
quercetin (D ± Q), which improves many aspects of aging in
mouse models of accelerated and natural aging. However, safer
and improved drugs targeting senescence likely are needed to
eliminate senescent cells safely from multiple organs or even
within a single tissue.

Added value of the study

This study identifies the flavonoid polyphenol fisetin as having
greater senotherapeutic activity in cultured cells than quercetin.
In addition, fisetin had potent senotherapeutic activity in vivo.
Treatment of progeroid and aged wild-typemice acutely or inter-
mittentlywith fisetin reduced senescencemarkers inmultiple tis-
sues and a subset of cell types in adipose tissue. Importantly,
chronic administration of fisetin to wild-type mice late in life im-
proved tissue homeostasis, suppressed age-related pathology,
and extended median and maximum lifespan. This result, similar
to a recent report on the combination of D±Q, is the first to doc-
ument extension of both health span and lifespan by a senolytic
with few side effects, even though administration was started
late in life.

Implications of all the available evidence

Taken together, these data establish the natural product fisetin as
a potent senotherapeutic, able to reduce the burden of senescent
T, NK, progenitor, and endothelial cells from fat tissue, and dem-
onstrate that reducing the senescent cell burden in mice even
late in life is sufficient to have a significant health impact. Given
the known safety profile of fisetin in humans, clinical trials are be-
ginning in order to test if fisetin can be used effectively to reduce
senescent cell burden and alleviate dysfunction in elderly subjects.
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enter a state characterized by profound chromatin and secretome
changes, increased expression of the cell cycle inhibitor p16Ink4a, replica-
tive arrest, and resistance to apoptosis [1,14]. Senescent cells can
develop a senescence-associated secretory phenotype (SASP),
consisting of pro-inflammatory cytokines, chemokines, and extracellu-
lar matrix-degrading proteins [15–18], which has deleterious paracrine
and systemic effects [19–21]. Indeed, even a relatively low abundance of
senescent cells is sufficient to cause tissue dysfunction [22]. Senescent
cells are rare in young individuals, but increase with age inmultiple tis-
sues, including adipose tissue, skeletal muscle, kidney, and skin of all
vertebrates tested [22,23].
The role of senescent cells in age-related decline was identified by
studies demonstrating the therapeutic benefits of clearing of senescent
cells from progeroid or naturally-aging INK-ATTAC mice using a suicide
gene expressed only in p16Ink4a expressing cells (J.L.K., T.T., J.M. van
Deursen, and D.J. Baker [all Mayo Clinic] designed the INK-ATTAC strat-
egy [19,20,24–26]). Conversely, injection of senescent cells is sufficient
to drive age-related conditions such as osteoarthritis, frailty, and
decreased survival [26,27]. Thus, the development of therapies that se-
lectively kill senescent cells was anticipated to delay the onset of aging
phenotypes, attenuate severity of age-related diseases, improve resil-
iency, and enhance survival. Importantly, it was also predicted that
senolytic therapies could be administered intermittently, serving to re-
duce the senescent cell burden by treating quarterly or even annually,
which minimizes the risk of side effects [28,29].

We previously identified drugs that selectively kill senescent cells
using a hypothesis-driven discovery paradigm [30]. Senescent cells are
resistant to apoptosis due to upregulation of Senescent-Cell Anti-
Apoptotic Pathways (SCAPs) [28,29]. Targeting SCAPs in cell culture
using a combination of dasatinib and quercetin, an inhibitor of BCL-2
pro-survival pathway members, Navitoclax, or the more specific BCL-
xL inhibitor, A1331852, results in apoptosis of some but not all senes-
cent cell types [30–33]. Treatment of micewith dasatinib plus quercetin
(D+ Q) improves cardiac ejection fraction and increases vascular reac-
tivity in old mice after a single, 3 day treatment course [30,34]. In addi-
tion, D + Q treatment decreases vascular calcification and increases
vascular reactivity in hypercholesterolemic, high fat diet fed ApoE−/−

mice after three monthly 3 day treatment courses [34]. Intermittent
oral D + Q treatment improves pulmonary function and reduces pul-
monary fibrosis in a bleomycin-induced murine model of idiopathic
pulmonary fibrosis [35], reduces high fat diet-induced liver steatosis
[36], alleviates gait impairment caused by leg irradiation [30] and re-
duces osteoporosis in aged mice [10]. Finally, D + Q also decreases
frailty, osteoporosis, loss of intervertebral disc glycosaminoglycans,
and spondylosis in the Ercc1−/Δ mouse model of a human progeroid
syndrome after intermittent treatment [30]. Similarly, Navitoclax,
which decreases abundance of some but not all human and mouse se-
nescent cell types in vitro [33], reduces hematologic dysfunction caused
by whole body radiation [31] and reduces senescent cell-like, intimal
foam cell/macrophages in vascular plaques in high fat fed LdlR−/−

mice [37]. Treatment with A1331852 reduces senescent cholangiocytes
and liver fibrosis in Mdr2−/− mice [38]. Taken together, these studies
demonstrate that senolytic compounds can have significant effects on
chronic degenerative diseases and age-related pathology.

However, not all senescent cells are the same. Senescent cells may
express different SASP factors, senescence markers, and more impor-
tantly use different mechanisms to resist apoptosis [30,39]. Further-
more, certain cancer therapeutics target SCAPs, e.g. Navitoclax, and
could be repurposed as senolytics, but cause considerable toxicity in-
cluding neutropenia and platelet deficiency [40,41]. Thus, new and im-
proved senotherapeutic drugs and combinatorial approaches are
needed to eliminate senescent cells safely from multiple organs or
even within a single tissue [28–30,42].

Here, we screened a panel of flavonoids for senotherapeutic activity
to determine if we could improve upon quercetin. In primary murine
embryonic fibroblasts induced to senescence through oxidative stress
and in human fibroblasts induced to senescence with the genotoxin
etoposide, fisetin was most effective at reducing senescent markers.
Fisetin also reduced senescence markers in progeroid Ercc1−/Δ mice
and aged WT mice, as well as human explants of adipose tissue. Fisetin
treatment extended the health and lifespan in WT mice even when
treatmentwas initiated in aged animals. This flavonoid is a natural com-
pound present in many fruits and vegetables such as apples, persim-
mon, grapes, onions, cucumbers and strawberries [43,44], suggesting
that it is imminently translatable. Importantly, no adverse effects of
fisetin have been reported, even when given at high doses [45]. Thus,
our results suggest that supplementation or even intermittent
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treatment with this safe, natural product could improve healthy aging,
even in elderly individuals.

2. Materials and methods

2.1. Chemicals

Chemicals were from Sigma-Aldrich (St. Louis) unless otherwise
noted. The flavonoids were purchased from Selleckchem (Houston,
TX): resveratrol (Cat #S1396), fisetin (Cat #S2298), luteolin (Cat
#S2320), rutin (Cat #S2350), epigallocatechin gallate (EGCG, Cat
#S2250), curcumin (Cat #S1848), pirfenidone (Cat #S2907), and
myricetin (Cat #S2326). Apigenin, catechin, and quercetin were pur-
chased from Sigma-Aldrich (Cat #1760595, #1096790 and 1,592,409,
respectively).

2.2. Animals

All animal studies were conducted in compliance with the U.S. De-
partment of Health and Human Services Guide for the Care and Use of
Laboratory Animals and were approved by the Scripps Florida or Mayo
Clinic Institutional Animal Care and Use Committees. Ercc1−/Δ mice
were bred as previously described [46]. p16-luciferase reporter mice
were obtained from Ohio State University [47] and bred to create an al-
bino C57BL/6 p16Luc/+;Ercc1+/− and FVB/n p16+/Luc;Ercc1+/Δ strain.
These mice were further crossed to create f1 p16+/Luc;Ercc1−/Δ mice
with white fur for imaging. All animals were genotyped from an ear
punch by TransnetYX (Cordova, TN). For diet studies, mice were fed
Teklad 2020 chow (Envigo, Madison, WI) prepared with or without
500 ppm (500 mg/kg) of fisetin (Indofine Chemical Co., Hillsborough,
NJ) by Envigo. Co. (Tampa, FL). For oral administration of fisetin, mice
were dosed with 100 mg/kg of fisetin in 60% Phosal 50 PG:30%
PEG400:10% ethanol or vehicle only by gavage. Studies in aged wild-
type mice were conducted in both f1 C57BL/6;FVB/n and inbred
C57BL/6 genetic backgrounds.

2.3. MEF isolation

The Ercc1−/− MEFs were isolated from pregnant females at embry-
onic day 13 (E13) and cultured in a 1:1 mixture of Dulbecco's modified
Eagle's medium and Ham's F10 with 10% fetal bovine serum, 1× nones-
sential amino acids, penicillin, and streptomycin and incubated at 3% O2

initially, followed by a shift to 20% for 5 passages to induce senescence
[48]. Cells were genotyped by TransnetYX (Cordova, TN) and routinely
tested for mycoplasma contamination using theMycoAlert PLUS myco-
plasma detection kit (Lonza, Walkersville, MD).

2.4. Assays to identify senotherapeutics

Ercc1−/− MEFs were passaged 5 times at 20% O2 to induce senes-
cence then seeded at 5000 cells per well in 96 well plates at least 6 h
prior to treatment. Following the addition of drugs, theMEFswere incu-
bated for 24–48 h at 20% O2. Subsequently SA-β-gal activity was mea-
sured in three independent experiments, as previously described [49].
Briefly, cells were washed with PBS then 10 μM C12FDG added in fresh
culture medium and incubated for 2 h. Ten min prior to analysis, 2
μg/mL Hoechst dye was added. An IN Cell Analyzer 6000 was used to
quantitate total number of viable cells (Hoechst+) and the number of
senescent cells (C12FDG+). All samples were analyzed in duplicate
with 3–5 fields per well and reported as the mean ± S.D.
Senotherapeutic activity was confirmed in human fibroblasts (IMR90).
The cells were obtained from American Type Culture Collection
(ATCC) and cultured in EMEM medium with 10% FBS and antibiotics.
To induce senescence, the cells were treated for 24 h with 20 μM
etoposide. Two days after etoposide removal, ~70% of the cells were
SA-β-gal+. Cells were treated for 48 h with different concentrations of
fisetin (1–15 μM)and thepercentage of SA-β-gal+ cellswasdetermined
using C12FDG, as described above.

2.5. IVIS in vivo imaging detection of luciferase activity

Isoflurane-anesthetized mice (n = 2–10 mice per group) were
injected intraperitoneally with 10 μL per gram body weight D-luciferin
substrate (Caliper Life Sciences, Hopkinton, MA; 15 mg/mL diluted in
sterile PBS) andwere imaged using an IVIS Lumina (PerkinElmer, Biller-
ica, MA), as previously described [47,50].

2.6. Measurement of lipid peroxidation

Levels of 4-hydroxynonenal-protein adducts of liver lysates (n =
4–6 mice per group) prepared in RIPA buffer were measured in the
livers of mice using the OxiSelect HNE Adduct Competitive ELISA kit
(Cell Biolabs, San Diego, CA), as described [50].

2.7. Measurement of glutathione

Murine livers (n=4–7miceper group)fixed in 5% sulfosalicylic acid
were prepared and analyzed for the concentration of reduced (GSH)
and oxidized (GSSG) glutathione using the Glutathione Assay Kit (Cay-
man Chemical, Ann Arbor, MI), as described [50]. Sample absorbance
was measured at 405 nm using a plate reader and the ratio of GSH:
GSSG was reported for each sample.

2.8. Clinical chemistries

Whole blood (n = 3–6 mice per group) was collected immediately
following animal euthanasia via cardiac puncture into heparinized
tubes for analysis of clinical chemistries utilizing VetScan Comprehen-
sive Diagnostic Profile rotors on a VestScan VS2 (Abaxis, Union City, CA).

2.9. Serum MCP-1

Serum concentrations of MCP-1 (n = 5 mice per group) were mea-
sured using a mouse-specific MCP-1 ELISA (Raybiotech, Norcross, GA),
as described [51].

2.10. Histopathology

Mouse tissues were collected at necropsy (n=3–8 mice per group)
and placed in 10% neutral buffered formalin for 48 h, transferred to 70%
alcohol, and subsequently processed into paraffin blocks for sectioning
and hematoxylin and eosin staining. Tissue sections were scored for
the presence and severity of a well-defined panel of age-related lesions
by a veterinary pathologist to create a composite tissue lesion score for
each animal that reflects healthspan, as previously described [52].

2.11. RNA isolation and qPCR

Tissues were harvested from mice (n = 4–10 mice per group) and
snap frozen in liquid nitrogen. Total RNA was harvested from tissues
and the expression of several markers of senescence was measured, as
previously described in [51]. Total RNA was quantified using a
Nanodrop spectrophotometer (Thermo Fisher, Waltham, MA) and 1
μg of total RNA was used to generate cDNA using the Transcriptor First
Strand cDNA synthesis kit (Roche, Basel, Switzerland). Gene expression
changes were carried out in 20 μL reactions using the Universal SYBR
Green master mix with ROX (Roche) and a StepOne thermocycler
(Thermo Fisher). Primers for the genes of interest are as follows:
Cdkn1a (p21Cip1) Fwd 5’-GTCAGGCTGGTCTGCCTCCG-3′, Cdkn1a
(p21Cip1) Rev. 5’-CGGTCCCGTGGACAGTGAGCAG-3′; Cdkn2a (p16Ink4a)
Fwd 5′- CCCAACGCCCCGAACT-3′, Cdkn2a (p16Ink4a) Rev. 5′- GCAGAA
GAGCTGCTACGTGAA-3′; Gapdh Fwd 5’-AAGGTCATCCCAGAGCTGAA-3′,
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Gapdh Rev. 5’-CTGCTTCACCACCTTCTTGA-3′; Il6 Fwd 5’-CTGGGAAATCG
TGGAAT-3′, Il6 Rev. 5’-CCAGTTTGGTAGCATCCATC-3′; Mcp1 Fwd 5’-
GCATCCACGTGTTGGCTCA-3′, Mcp1 Rev. 5’-CTCCAGCCTACTCATTGGG
ATCA-3′. Data were analyzed by ΔΔCt method and gene expression
was normalized to Gapdh.

2.12. Isolation of peripheral blood CD3+ T lymphocytes

Blood was obtained from mice n = 4–10 mice per group) postmor-
tem by cardiac puncture, immediately placed into 1/10th volume of
0.5 M EDTA, and gently mixed to prevent coagulation. Samples were
centrifuged at 300 g for 10min in a table top centrifuge. The supernatant
was discarded and the cell pellet was resuspended in 1 mL ACK buffer
(150 mM NH4Cl, 10 mM KHCO3, 0.1 mM Na2EDTA, pH 7.4) and incu-
bated at room temperature for 10 min to lyse red blood cells. The cells
were spun down and ACK lysis repeated. The cells were spun down,
washed with PBS, and resuspended in PBS containing 0.5% FBS and
2 mM EDTA. Fifty μL of CD3-Biotin conjugate (Miltenyi Biotech, San
Diego, CA) were added to the cell suspension and incubated for
30min on ice. The cellswere centrifuged at 100 g for 10min andwashed
twice in resuspension buffer. The cell pellet was resuspended in 500 μL
of resuspension buffer and 100 μL of anti-biotinmicrobeadswere added
followed by a 15 min incubation on ice. The cells were washed twice
and then resuspended in 500 μL of resuspension buffer and applied to
aMACS column attached to amagnet. The cells werewashedwith 3 col-
umn volumes of resuspension buffer before elution. The cells were cen-
trifuged and RNA isolation conducted using an RNeasy kit (Qiagen,
Germantown, MD) according to the manufacturer's specifications.
qPCR analysis of senescencemarkerswas performed as indicated above.

2.13. Senescence-associated β-galactosidase (SA-β-gal) staining of tissue

Fresh fat tissues (n=6–7mice per group)were fixed and stained to
detect senescence-associated β-galactosidase activity, as described [53].

2.14. Mass cytometry/CyTOF in adipose tissue

This high dimensional single-cell proteomics technique combines
time-of-flight mass spectrometry with metal-labelling technology to
detect up to 40 protein targets per cell [54,55]. A panel of antibodies
based on cell surfacemarkers and transcription factors (see Supplemen-
tal Table 1) was designed for CyTOF analysis of adipose tissues. Each an-
tibody was tagged with a rare metal isotope and its function verified by
mass cytometry according to the factory manual (Multi Metal labeling
Kits, Fluidigm, CA). A CyTOF-2 mass cytometer (Fluidigm, South San
Francisco, CA) was used for data acquisition. Acquired data were nor-
malized based on normalization beads (Ce140, Eu151, Eu153, Ho165,
and Lu175). One gram of subcutaneous fat tissue (n = 6–9 mice per
group) was dissociated into a single-cell suspension using an adipose
tissue dissociation kit (Adult Adipose Tissue Dissociation Kit, Miltenyi
Biotec Inc.CA). Collected cells were incubated with metal-conjugated
antibodies for cell surface markers and intracellular proteins. Fixation
and permeabilization were conducted according to the manufacturer's
instructions (Transcription Factor Staining Buffer Set, eBioscience, San
Diego, CA). CyTOF data were analyzed by Cytobank (Santa Clara, CA).

2.15. Human adipose tissue explants

The protocol was approved by the Mayo Clinic Foundation Institu-
tional Review Board for Human Research. Informed consent was ob-
tained from all subjects (n = 3). Human greater omental adipose
tissue was resected during surgery from 2 lean (BMI 25.5 and 26.2)
and 1 obese (BMI 45.6) female subjects, ages ranging from 55 to
66 years. No subject was known to have a malignancy. The adipose tis-
sue was cut into small pieces andwashedwith PBS 3 times. The adipose
tissue was then cultured inmedium containing 1mM sodium pyruvate,
2 mM glutamine, MEM vitamins, MEM non-essential amino acids, and
antibiotics with 20 μM of fisetin or DMSO. After 48 h, the adipose ex-
plants were washed 3 times with PBS and was then maintained in the
same media without drugs for 24 h to collect conditioned medium
(CM) for multiplex protein analysis. The adipose explants then were
fixed and stained to detect senescence-associatedβ-galactosidase activ-
ity [85].

2.16. Multiplex protein analyses

Pro-inflammatory cytokine and chemokine protein levels in CM
from the adipose tissue explants (n=3)weremeasured using Luminex
xMAP technology. The multiplexing analysis was performed using the
Luminex™ 100 system (Luminex, Austin, TX) by Eve Technologies
Corp. (Calgary, Alberta, Canada). Human multiplex kits were from
Millipore (Billerica, MA). The secreted protein levels in CM were nor-
malized to the tissueweights and plotted as a percent relative to the ve-
hicle control.

3. Results

We previously demonstrated that the flavonoid quercetin, an anti-
oxidant, which also targets PI3 kinase delta aswell as certain BCL-2 fam-
ily members, reduces senescence in primary human umbilical vein
endothelial cells (HUVECs) and murine embryonic fibroblasts (MEFs),
especially when used in combination with the tyrosine kinase inhibitor
dasatinib [30]. To determine if other flavonoidsmight havemore potent
senotherapeutic activity than quercetin, a panel of flavonoids was
screened for effects on senescence induced by oxidative stress [49]. Pri-
mary MEFs from Ercc1−/− mice were used. These cells undergo prema-
ture senescence if grown at atmospheric oxygen [56]. Ercc1−/− MEF
cultures were established at 3% O2 then shifted to 20% O2 for three pas-
sages to induce senescence. To quantify senescent cells, SA-ß-gal activ-
ity was measured using the fluorescent substrate C12FDG [57] using an
IN Cell Analyzer 6000 confocal imager. At a dose of 5 μM, fisetin was
most effective in reducing the fraction of SA-ß-gal positive MEFs
(Fig. 1A). Luteolin and curcumin also showed weak activity at a dose
where quercetinwas ineffective. In addition, fisetin reduced senescence
in MEFs and IMR90 cells in a dose-dependent manner (Fig. 1B and C).
These results are consistent with our previous finding that fisetin selec-
tively reduces the viability of senescent HUVECs without affecting pro-
liferating cells [32]. In HUVECs, fisetin induces apoptosis as measured
by caspase3/7 activity, whereas in MEFs, fisetin suppressed markers of
senescence without evidence of cell killing [32].

To test the senotherapeutic activity of fisetin in vivo, initially
progeroid Ercc1−/Δ mice carrying a p16Ink4a-luciferase reporter trans-
gene were used [47,50]. These mice show accelerated accumulation of
senescent cells compared to WT mice, but the overall level of senes-
cence never exceeds that of naturally aged mice [50]. Ercc1−/Δ;
p16Ink4a-luciferase mice were fed a standard Teklad 2020 chow diet
with or without supplementation with 500 ppm (500mg/kg) of fisetin,
ad libitum (approximately 60mg/kg fisetin per day). Themice were ex-
posed to a fisetin diet intermittently from 6 to 8 then 12–14 wks of age.
Whole body luciferase activity was measured before starting the fisetin
diet then weekly thereafter. Animals in the two treatment groups had
an equivalent luciferase signal prior to administration of the experimen-
tal diet. Dietary fisetin suppressed the luciferase signal of Ercc1−/Δ;
p16Ink4a-luciferase mice significantly (Fig. 2A-B). The luciferase signal
was lower at every time point after initiation of the fisetin diet
(Fig. 2B-C). Notably, the level of p16Ink4a expression remained signifi-
cantly lower in the fisetin-treated mice throughout the 4 week period
when the animals were not exposed to fisetin (8–12 wks of age,
Fig. 2B). This is consistent with a mechanism of action where senescent
cells are cleared (senolytic) or senescence is reversed (senomorphic)
but not a mechanism in which fisetin must be chronically present to
suppress senescence.
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Fig. 1. Identification of fisetin as a putative senolytic. (A) Passage 5 Ercc1−/− MEFs were treated with a panel of flavonoid compounds at a dose of 5 μM and the viability of senescent cells
(SA-β-gal+ cells detected by C12FDG staining; red bars) and total cells (black bars)measured using an INCell Analyzer 6000. The number of viable cells is calculated relative to cells treated
with vehicle only (DMSO). n = 3 independent experiments, one-way ANOVA. (B) Quantitation of the total number of viable Ercc1−/− MEFs and viable senescent Ercc1−/− MEFs after
treating mixed cultures of proliferating and senescent cells with various doses of fisetin from two biological replicates conducted in triplicate. Two-tailed unpaired Student's t-test.
(C) Early passage IMR90 cells were treated for 24 h with 20 μM etoposide. Two days after etoposide removal, ~70% of the cells were SA-β-gal+. Cells were treated for 48 h with different
concentrations of fisetin (1–15 μM) and the percentage of SA-β-gal+ cells was determined using C12FDG, as described above. Graphed are the relative number of viable cells compared to
cultures treatedwith vehicle only (DMSO). All sampleswere analyzed in duplicatewith 3–5 fields perwell and reported as themean± S.D. Two-tailed unpaired Student's t-test. Plotted is
the mean ± SEM. *p b .05, **p b .01, ***p b .001, ****p b .0001.
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To validate the imaging data, Ercc1−/Δ mice were treated with the
500 ppm fisetin diet for 10wks beginning at 10wks of age, then tissues
collected for measurement of multiple markers of senescence including
p16Ink4a and p21Cip1 and SASP factors. Expression of p21Cip1was included
since not all senescent cells are p16Ink4a positive: some are p21Cip1 posi-
tive, but p16Ink4a negative. As shown in Fig. 3A-D, p16Ink4a and p21Cip1

mRNA, as well as SASP markers, were significantly elevated in the fat,
spleen, liver, and kidney of Ercc1−/Δ mice compared to age-matched
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WT mice. Fisetin reduced expression of senescence and SASP markers
significantly in all tissues. Similarly, therewas a reduction in the expres-
sion of p16Ink4a, p21Cip1 and the SASP factors in peripheral blood CD3+ T
cells (Fig. 3E), a cell type that demonstrates a robust increase in p16INK4a

expression as humans age [58]. In addition, fisetin reduced oxidative
stress in the liver as determined by measuring the lipid peroxidation
product 4-hydroxynonenal (HNE) adducts and an increase in the ratio
of reduced to oxidized glutathione (Fig. 3F-G), consistent with data
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indicating fisetin has antioxidant activity as well as increasing intracel-
lular glutathione [45].

To confirm further the data obtained in progeroid mice, we
employed naturally aged C57BL/6mice and differentmethods of detect-
ing senescence in tissue. 22–24-month-old mice were treated with
100 mg/kg fisetin for 5 consecutive days by oral gavage, or vehicle
only. Mice were sacrificed 3 days after the last dose and the number of
SA-ß-gal+ cells present in inguinal fat was determined by staining tis-
sue sections to measure SA-β-gal activity. Fat tissue was chosen for
the analysis since there is a clear upregulation of senescencemarkers in-
cluding SASP in our mouse models, the tissue has a significant increase
in the fraction of senescent cells including senescent immune cells, such
as T and endothelial cells and macrophages, and injection of senescent
pre-adipocytes is sufficient to induce frailty in young mice
[26,50,59,60]. Short-term treatment with fisetin significantly reduced
the fraction of senescent cells in white adipose tissue (WAT). To deter-
mine which cells become senescent in WAT and which cell types are
cleared by fisetin, CyTOF analysis was performed on subcutaneous adi-
pose tissue from aged INK-ATTAC mice expressing a Flag-tagged FKBP-
Casp8 protein from the p16Ink4a promoter (Fig. 4B). The Flag tag enabled
identification of senescent (p16Ink4a-expressing) cells using an anti-Flag
antibody. CyTOF analysis revealed a significantly elevated fraction of se-
nescent cells in fat from old mice compared to young and identified
these cells asmesenchymal stem/progenitor cells, T lymphocytes, natu-
ral killer cells, and endothelial cells (Fig. 4C). The short-course treat-
ment with fisetin resulted in a significant reduction in the fraction of
senescent cells in each of these populations (Fig. 4C). Fisetin reduced
the fraction of p16Ink4a-expressing, c-Kit+ stem/progenitor cells, CD4+
and CD8+ T cells, NK-1.1+ NK cells, and CD146+CD31+ endothelial
cells (Fig. 4C). These data are also shown in Spanning-tree Progression
Analysis of Density-normalized Events (SPADE) analysis (Supplemental
Fig. 1). To confirm senescence in these cell populations, CENP-B protein
was measured by CyTOF (Fig. 4D). CENP-B binds centromeric satellite
DNA [61], which becomes distended in senescent cells. The fraction of
CENP-B+ cells inWATwas significantly increased in oldmice compared
to young and suppressed by treating the mice with a short-course of
fisetin, in the same manner as p16Ink4a-expressing/FLAG+ cells. In con-
trast, p21Cip1 (another cell-cycle regulator that is often up-regulated in
senescent cells) expression was not significantly elevated in these cell
populations (Supplemental Fig. 2). While FLAG+ dendritic cells and
macrophages were increased in WAT from old mice consistent with a
previous report [62], fisetin treatment had no substantial effect on the
fraction of macrophages or dendritic cells with high p16Ink4a, CENP-B,
or p21Cip1 (Supplemental Fig. 3). Taken together, these data demon-
strate that a short-course of fisetin reduces the number of p16Ink4a-
expressing cells in subcutaneous WAT including mesenchymal stem/
progenitor, immune, and endothelial cells. This is the first time a
senotherapeutic has been demonstrated to differentially affect senes-
cent cells of different lineages in vivo.

To determine iffisetin also reduces senescence in human adipose tis-
sue, greater omental adipose explants resected during surgery were
treated with fisetin ex vivo. The tissue explants were treated for 48 h
with 20 μM fisetin, washed, and cultured for an additional 24 h before
measuring SASP factors bymultiplex protein analysis [26]. Fisetin treat-
ment caused a significant reduction in the percent of SA-ß-gal positive
cells (Fig. 4E) as well as in expression of the SASP factors IL-6, IL-8,
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and MCP-1 in human WAT (Fig. 4F). These data support the transla-
tional potential of fisetin to reduce senescent cell burden and associated
inflammation.

To determine if fisetin-mediated clearance of senescent cells im-
pacts the health or lifespan of mice, WT f1 C57BL/6:FVB mice were
fed a diet containing 500 ppm fisetin beginning at 85 wks of age,
roughly equivalent to age 75 years in humans. This resulted in an ex-
tension of median as well as maximal lifespan (Fig. 5A-B). Amylase
and alanine aminotransferase (ALT) were significantly lower in
serum of aged WT mice fed the diet supplemented with fisetin, con-
sistent with improved pancreatic and liver homeostasis (Fig. 5C).
Brain, kidney, liver, lung, and forepaw tissue sections were stained
with hematoxylin and eosin and evaluated by a veterinary pathologist.
Using the Geropathology Grading Platform to score age-related lesions
[63], several tissues had reduced age-related pathology in the fisetin
diet group compared to the control diet (Fig. 5D). An example of
this is illustrated in a representative image from renal sections in
Fig. 5E. Similar to the progeroid mice, fisetin reduced the expression
of senescence and SASP markers in multiple tissues of aged WT mice
exposed to oral fisetin (Fig. 5F-I). Furthermore, there was a reduction
in senescence and SASP factor expression in peripheral CD3+ T cells
(Fig. 5J). There was also a reduction in levels of circulating MCP-1
(Fig. 5K), a SASP factor [51]. Finally, fisetin reduced oxidative stress
in the liver of old WT mice (Fig. 5L-M).
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4. Discussion

Aging is a complex process involving numerous pathways and both
genetic and environmental components [64–69]. The biological pro-
cesses that drive the aging process contribute to the etiology of most
chronic diseases including: 1) chronic, “sterile” inflammation; 2)macro-
molecular changes in proteins, carbohydrates, lipids, mitochondria, and
DNA; 3) stem cell and progenitor dysfunction; and 4) increased cellular
senescence [5,70]. These processes are linked in that interventions that
target one appear to attenuate others. For example, senescent cells ac-
cumulate with age and at sites of pathogenesis in chronic diseases
[5,70]. Reducing senescent cell burden can lead to reduced inflamma-
tion, decreased macromolecular dysfunction, and enhanced function
of stem/progenitor cells [1,3,19]. Adult stem cells also become dysfunc-
tional with age, displaying evidence of senescence [71]. We previously
demonstrated that the combination of dasatinib and quercetin function
as a senolytic in vivo, alleviating many age-related diseases [26,30]. Be-
cause of the senotherapeutic activity of quercetin, we examined other
natural flavonoids for effects on senescent cells in hopes of improving
therapeutic efficacy.

Here, we demonstrate that when tested against a panel of other fla-
vonoids, fisetin had the most potent senotherapeutic effects in several
cell types in vitro and showed strong anti-geronic effects in vivo. We
demonstrated that acute (oral) or chronic (dietary) treatment of
progeroid and WT mice with fisetin reduces markers of senescence
and senescence-associated secretory phenotype in multiple tissues
(Fig. 3A-D, 4A, 5F-I). These data were collected in two labs using
progeroid and WT mice in two distinct genetic backgrounds. Specifi-
cally, p16Ink4a-expressing or CENP-B+ mesenchymal stem/progenitor,
T lymphocytes, natural killer and endothelial cells were removed from
subcutaneous fat of old mice, but not activated senescent-like macro-
phages or dendritic cells. The effect of fisetin was greater on p16Ink4a-
expressing cells than on p21CIP1-expressing cells, at least in subcutane-
ous fat (Fig. 4). Our findings reveal that fisetin targets multiple, but
not all types of senescent cells in vivo. Furthermore, by reducing the per-
cent of senescent cells,fisetin reduces expression of senescencemarkers
inmultiple organs asmeasured by qPCR. This results in improved tissue
homeostasis and reduction in multiple age-related pathologies, consis-
tent with effects on a fundamental aging process.

The fact that fisetin reduced the fraction of senescent T and NK
cells could help amplify the beneficial effects of fisetin, since healthy
immune cells are important for clearing senescent cells [72,73]. Simi-
larly, fisetin reduces markers of inflammation and oxidative stress
(Figs. 3F-G and 5L-M), consistent with prior literature [45]. This too
could contribute to the reduction in senescence markers. The decrease
in these markers was observed in tissues harvested several days after
completion of fisetin administration. Since the rapid and terminal
half-lives of fisetin are 0.09 and 3.1 h respectively [74], these improve-
ments did not depend on continued presence of circulating fisetin.
This is more consistent with fisetin causing removal of senescent
cells, which take days to weeks to form after an insult (at least in cul-
ture), than with effects exerted by continued occupancy of a receptor
or effects on an enzyme. However, it is important to note that given
the multiple reported activities of flavonoids like fisetin, it is also pos-
sible that the extension of healthspan is due to mechanisms in addi-
tion to the reduction in senescence, such as altering the gut
microbiome [75].
(from left to right) indicate increased cellularity at a segment of the glomerular capsule border,m
mouse, the arrow indicates onlymild segmental cellularity at the glomerular capsule border an
from N120-week-oldmice (~30 mth) fed control or fisetin chowwere analyzed for the presenc
(Il1β, Il6, Il10, Tnfα, Cxcl2, Mcp1, and Pai1) markers by qRT-PCR. Results are expressed as a func
ANOVA with Tukey's multiple comparison test. (J) Senescence and SASP marker expression w
of values in 16–18-week-old “Young” WT mice. n = 4–6 mice per group. One-way ANOVA w
MCP-1 were measured by ELISA. n = 5 mice per group. One-way ANOVA with Tukey's multip
and oxidative stress measured by ELISA in liver. n = 5–6 mice per group. Two-tailed unpaired
sured as an index oxidative stress. n = 6–7 mice per group. Values represented as the mean ±
Fisetin extends the replicative lifespan of S. cerevisiae by 55% [76]
and the lifespan of D. melanogaster by 23% [77]. Here, we show for the
first time a similar effect in vertebrate animals. Chronic exposure to
fisetin improves healthspan and extends the median and maximum
lifespan of mice. Importantly, in our study fisetin supplementation
was initiated in mice N20 months old. This increases the translational
potential of our study since senotherapeutic interventions are most fea-
sibly administered in elderly humans after the onset of age-related dis-
eases, rather than in younger asymptomatic subjects, inwhomany side-
effects would be unacceptable.

Fisetin is a member of the flavonoid family, a family of naturally oc-
curring polyphenolic compounds. Fisetin, a high Trolox-equivalent anti-
oxidant, is present in low concentrations in many fruits and vegetables
such as apples, persimmon, grapes, onions, and cucumbers and at
higher concentrations in strawberries [43,44]. The average dietary in-
take of naturally occurring fisetin in Japan is approximately
0.4 mg/day [78,79], apparently without any adverse effects. Fisetin has
anti-cancer activity and appears to block the PI3K/AKT/mTOR pathway
[80]. We previously found that transiently disrupting the PI3K/AKT
pathway by RNA interference leads to death of senescent cells [30], as
with other SCAPs that defend senescent cells from their own pro-
apoptotic SASP [28,29]. Fisetin, like some other flavonoids, is a topo-
isomerase inhibitor, which may also contribute to its anti-cancer activ-
ity [81]. It increases the catalytic activity of hSIRT1 at least in vitro [76].
Also in vitro, fisetin inhibits the activity of several pro-inflammatory cy-
tokines, including TNFα, IL-6, and the transcription factor NF-κB [82].
Fisetin has direct activity as a reducing agent, chemically reacting with
and neutralizing reactive oxygen species [83,84]. Fisetin scavenges
free radicals as a result of its electron donating capacity, which is due
to the presence of two hydroxyl groups on one ring and a third hydroxyl
group on another ring. Fisetin also upregulates synthesis of glutathione,
an endogenous antioxidant [43,82]. Other biological activities include
anti-hyperlipidemic [84–86], anti-inflammatory [85], and neurotrophic
[87] effects, some of which could be mediated through a reduction in
the senescent cell burden, particularly since when administered inter-
mittently, fisetin alleviated dysfunction despite its short elimination
half-life, more consistent with elimination of senescent cells than action
on a receptor or enzyme requiring continuous drug presence.

The chemical structure of fisetin is almost the same as quercetin ex-
cept for a hydroxyl group in position 5. Thus, it is highly likely that these
two closely related compounds exertmany similar effects. Interestingly,
preliminary medicinal chemistry on fisetin has identified analogues
with enhanced senotherapeutic activity, suggesting that even more ef-
fective flavonoids can be developed for extending healthspan with
minor alterations in the structure of fisetin.

Given that fisetin is a natural product found in common foods and
available as an oral dietary supplement and has no reported adverse
side effects [45], our pre-clinical data suggest that fisetin should be im-
minently translatable and could have a significant benefit to the health
of elderly patients. Based on these mouse studies, clinical trials to eval-
uate the short-term benefits of intermittent fisetin treatment on certain
aspects of aging such as frailty are currently underway.
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