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Abstract: Tea and coffee are consumed worldwide and epidemiological and clinical studies have
shown their health beneficial effects, including anti-cancer effects. Epigallocatechin gallate (EGCG) and
chlorogenic acid (CGA) are the major components of green tea polyphenols and coffee polyphenols,
respectively, and believed to be responsible for most of these effects. Although a large number of
cell-based and animal experiments have provided convincing evidence to support the anti-cancer
effects of green tea, coffee, EGCG, and CGA, human studies are still controversial and some studies
have suggested even an increased risk for certain types of cancers such as esophageal and gynecological
cancers with green tea consumption and bladder and lung cancers with coffee consumption. The reason
for these inconsistent results may have been arisen from various confounding factors. Cell-based and
animal studies have proposed several mechanisms whereby EGCG and CGA exert their anti-cancer
effects. These components appear to share the common mechanisms, among which one related
to reactive oxygen species is perhaps the most attractive. Meanwhile, EGCG and CGA have also
different target molecules which might explain the site-specific differences of anti-cancer effects found
in human studies. Further studies will be necessary to clarify what is the mechanism to cause such
differences between green tea and coffee.

Keywords: cancer; tea; coffee; EGCG; chlorogenic acid; ROS; AMPK; NF-κB

1. Introduction

Green tea is produced by processing of leaves of the plant Camellia sinensis (Theaceae) and
is popularly consumed worldwide. Green tea has been shown to have beneficial effects on
human health such as anti-cancer, anti-obesity, anti-diabetic, anti-cardiovascular, anti-infectious
and anti-neurodegenerative effects [1,2]. (−)-Epigallocatechin gallate (EGCG) is the most abundant
catechin in green tea and believed to be mostly responsible for these biological effects (Figure 1). A cup
of green tea typically brewed from 2.5 g of tea leaves contains 240–320 mg of catechins, of which EGCG
accounts for 60–65% [3].
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Figure 1. Chemical structures of EGCG and CGA.

Black tea is produced also from C. sinensis through enzymatic processing (so called fermentation)
by intrinsic enzymes and microorganisms during which catechins can be polymerized to give catechin
derivatives such as theaflavins and theasinensins [4]. Black tea has been shown to have physiological
effects similar to those of green tea with lesser effects as compared with green tea due to its lower
content of EGCG.

Coffee is also consumed worldwide and has various health effects. It contains about 2000 different
chemicals and the major polyphenols are chlorogenic acid (CGA, Figure 1) and its derivatives which
amount to about 3% w/w of roasted coffee powder [2,5]. A single cup of coffee may contain 20–675 mg
of CGAs [6].

In this review, we discuss recent evidence from human studies to support the anti-cancer effects
of consumption of green tea and coffee and mechanistic aspects of the actions of EGCG and CGA
based on the results of cell-based and animal experiments. After the International Union of Pure and
Applied Chemistry reversed the order of numbering of atoms on the quinic acid ring in 1976 and
suggested the name 5-caffeoylquinic acid for chlorogenic acid instead of 3-caffeoylquinic acid [7,8],
there has been some confusion in the nomenclature of chlorogenic acid. In this review, we use the
term CGA according to the respective authors’ description. Caffeine is contained abundantly in tea
and coffee and may contribute to the anti-cancer effects of these beverages. However, cell-based and
animal studies have shown that EGCG as well as CGA exert anti-cancer effects by themselves as shown
below. Therefore, for the safe of clarity, the current review focuses on EGCG and CGA but excludes
any discussion on caffeine, which has already been comprehensively reviewed [9–12].

2. Anti-Cancer Effects of Green Tea

2.1. Human Studies on Green Tea

Several epidemiological studies have shown the anti-cancer effects of consumption of tea. A
survey in 2013 conducted by Yang and Hong of prospective cohort and case controlled studies which
had been reported by 2008 revealed that green tea consumption showed risk-reduction in a total of 39
cases of breast, colon, esophagus, kidney/bladder, lung, ovary, pancreas, prostate, stomach cancers,
whereas 46 cases showed no risk-reduction [1,13]. In the case of black tea, 28 and 92 cases showed
risk-reduction and no risk-reduction, respectively, for these cancers [13]. These findings suggest that
green and black teas have a preventive effect in some types of cancer.

When observational epidemiological studies were reviewed on over 1,100,000 participants from
46 cohort studies and 85 case-control studies [14], in three studies involving 52,479 participants, a lower
overall cancer incidence (summary relative risk (RR) = 0.83, 95% confidence interval (CI) = 0.65–1.07)
was found for the highest intake of green tea compared with the lowest consumption. For most of the
site-specific cancers, a decreased RR was found by this comparison. However, results were conflicting,
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since cohort studies in some cancer sites such as oesophageal, prostate and urinary tract cancer showed
an increased RR. Table 1 added to show the effects of green tea on cancer, further explained in later text.

Table 1. Recent observational epidemiological studies on anti-cancer effects of green tea.

Cancer Type Evaluation: Decrease (↓) or No
Effect (+/−) in Cancer Risk

Hazard Risk (HR) or Odds Ratio
(OR) or Relative Risk (RR)

[Confidence Interval]
Note Reference

Breast cancer ↓
HR = 0.82 [0.70–0.95] for ≥5 vs.

0 cups/day

Cohort study onwomen
with family history of

breast cancer
[15]

Breast cancer ↓
HR = 0.86 [0.75–0.99] for highest vs.

lowest intake
Meta-analysis of 16 cohort
and case-control studies [16]

Breast cancer ↓ OR = 0.83 [0.72–0.96] Meta-analysis of 14
case-control studies [17]

Colorectal cancer +/−
Cohort study on men

and women [18]

Colon cancer ↓

RR = 1.32 [0.90–1.94] for once/day vs.
less than once/day RR = 0.76
[0.57–1.02] for 2–3 times/day

RR = 0.78 [0.49–1.22] for ≥4 times/day

Cohort study on men [18]

Head and neck
squamous cell

carcinoma
↓

OR = 0.29 [0.16–0.52] for <1 cup/day
vs. no intake OR = 0.38 [0.17–0.86] for

≥1 cup/day vs. no intake

Case-control studyon men
and women [19]

Hematologic
neoplasms ↓

HR = 0.65 [0.42–1.00] for ≤2 cups/day
vs. no intake HR = 0.73 [0.47–1.13] for
3–4 cups/day vs. no intake HR = 0.63

[0.42–0.96] for ≥5 cups/day vs.
no intake

Cohort studyon men
and women [20]

Total cancer ↓

HR = 0.89 [0.83–0.96] for 1–2 cups/day
vs. <1 cup/day HR = 0.91 [0.85–0.98],

for 3–4 cups/day vs. <1 cup/day

Meta-analysis on 8 cohort
study on women [21]

A recent review of 144 randomized controlled trials (RCTs) and case-control studies also provided
evidence for beneficial effect of green tea in some cancer sites [14]. For example, the summary RR of
prostate cancer in the green tea-supplemented participants was 0.50 (CI = 0.18–1.36) on the basis of
three RCTs on 201 participants. However, the summary RR from 2 studies for gynecological cancer
was 1.50 (CI = 0.41–5.48), indicating conflicting outcomes for some cancer sites.

In a recent survey of epidemiological studies reported from 2014 to 2018 on tea’s anti-cancer
effects, Xu et al. [22] found that 5 and 2 studies of total 11 studies showed favorable and unfavorable
effects of tea consumption, respectively, while 4 studies gave no effect, indicating a difficulty in drawing
any conclusion.

More recent PubMed data search for human studies published from 2019 to April 2020
provided several papers showing anti-cancer effects of green tea [15–21] (Table 1). For example,
in a population-based prospective cohort study in which 13,957 men and 16,374 women participated,
the multiple-adjusted colon cancer RR (0.78, CI = 0.49–1.22) of men consuming ≥4 times of green tea
daily was lower than that of the <1 time consumers, although no significant associations between
green tea consumption and colorectal cancer (CRC) risk were found in men and women [18]. However,
the same search revealed that 3 studies for cervical, liver and stomach cancers did not show significant
risk reduction by green tea consumption [23–25]. Thus, human studies found health benefits of green
tea consumption in many cases, but it is also true that there are several conflicting results probably due
to incomplete elimination of confounding factors.

Polyphenon® E is a standardized catechin preparation of green tea extract which was approved
by the United States Food and Drug Administration in 2006 under the name of sinecatechins for
the topical treatment of genital warts [26]. Its efficacy has been proven by several clinical studies as
exemplified by a systematic review of three clinical trials in which Polyphenon® E treatments resulted
in significantly higher rates of complete clearance of baseline and new warts compared with controls
with very low recurrence rates [27]. Genital warts are caused by human papilloma viruses (HPVs)
such as types 6, 11 and 16 [28].
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In view of successful application to various types of viral agents, Polyphenon® E may be expected
to be useful for the possible application to HPV-associated cancers such as cervical cancer and
lymphocytic leukemia. A clinical trial in which 51 patients with HPV-infected cervical lesions were
treated with Polyphenon® E ointment or capsules or both, resulted in an overall 69% response rate as
compared with that of 10% in untreated groups [29].

In a phase II trial on 42 patients with asymptomatic, chronic lymphocytic leukemia, it caused a
sustained reduction of ≥20% of the absolute lymphocyte count in 31% of patients and ≥50% reduction
in palpable lymphadenopathy in 69% patients [30]. Thus, future clinical intervention studies with
Polyphenon® E could lead to clear evidence for the anti-cancer effects of green tea.

2.2. Basic Research on Anti-Cancer Action of Green Tea and EGCG

A large number of cell-based and animal studies have provided evidence to support EGCG’s
anti-cancer effects. For example, Wang et al. [31] demonstrated that EGCG decreased the numbers of
intestinal aberrant crypt foci and colorectal tumors in rats treated with dimethylhydrazine. In a review
article, Aggarwal et al. [32] summarized the results of 30 cell-based and 26 murine studies. Also, a
comprehensive review by Gan et al. [33] summarized 63 cell-based studies reported in 2001–2015 and
21 animal studies reported in 2007–2015 which demonstrated the anti-cancer effects of EGCG. These
authors suggested that these anti-cancer effects may be not due to EGCG itself but to its intracellular
metabolites in view of EGCG’s low bioavailability.

These basic studies have also proposed mechanisms under which EGCG exerts these effects [1–5].
This review focuses mechanisms related to anti-oxidant and pro-oxidant effects, anti-inflammatory
effects, anti-angiogenic effects, induction of apoptosis, modulation of epigenetic pathways and EGCG’s
binding to cancer-related proteins which have been reviewed in many articles [26,34–39].

2.3. Mechanisms for Anti-Cancer Effects of EGCG

2.3.1. Anti-Oxidant and Pro-Oxidant Effects

EGCG is a prominent anti-oxidant and quenches reactive oxygen species (ROS), which facilitate
oxidative DNA damage, mutagenesis, and tumor promotion, leading to anti-cancer effects [40]. EGCG
can exhibit anti-oxidant activity through several mechanisms including catalytic metal chelation,
hydrogen atom transfer, and electron transfer. Chemically, the anti-oxidant activity of EGCG can be
interpreted by the existence of the polyhydroxyl structure and the gallate group which play key roles to
scavenge free radicals and by the presence of phenolic groups with sensitivity to be oxidized, resulting
in generation of a quinone [37,41]. Figure 2 illustrates a possible pathway through which EGCG exerts
its anti-cancer actions via an anti-oxidant activity on the basis of present and previous findings and
discussions [2,22,26,34,37,38,42–44]. Modulation of 5′-AMP activated protein kinase (AMPK) by tumor
necrosis factor-α (TNF-α) is incorporated into Figure 2 based on the finding by Steinberg et al. [45]
that TNF-α suppresses AMPK activity via transcriptional upregulation of protein phosphatase-2C,
although this link remains to be explored in experiments using EGCG.
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Figure 2. A possible mechanism by which EGCG and CGA exert anti-cancer effects via
scavenging/downregulation of ROS. Red↓and blue↑marks represent downregulation/suppression
and upregulation/stimulation, respectively.

Actually, Bulboaca, et al. showed that i.p. administration of EGCG or liposomal EGCG improved
the oxidative stress parameters such as malondialdehyde levels and nitric oxide (NO) synthesis as
well as those of anti-oxidant status as evaluated by total anti-oxidant capacity and levels of thiols and
catalase in plasma of rats treated with streptozotocin [46].

Paradoxically, the pro-oxidant activity of EGCG has also been demonstrated by several studies
and generation of ROS by EGCG is thought to be essential for the induction of apoptosis and inhibition
of cell growth of cancer cells [37,40,42,47], as shown in Figure 3 which is compiled on the basis
of previous data [2,34,42,48–52]. Since ROS generation induced by EGCG can upregulate AMPK,
presumably through upregulation of Ca2+/calmodulin-dependent protein kinase kinase (CaMKK)
and/or liver kinase B1 (LKB1) [49,50], leading to downregulation of mechanistic target of rapamycin
kinase (mTOR) which results in anti-cancer effects. There are some reports to show downregulation
of nuclear factor-κB (NF-κB) by AMPK, if not directly [51,52]. Xiang et al. [52] demonstrated that
AMPK inhibited NF-κB activity using mice treated with complete Freund’s adjuvant. Therefore,
ROS-mediated AMPK activation may also cause the downregulation of NF-κB, leading to anti-cancer
effects through induction of apoptosis (Figure 3).
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Figure 3. A possible mechanism by which EGCG and CGA exert anti-cancer effects via
generation/upregulation of ROS. Red↓ and blue↑marks represent downregulation/suppression and
upregulation/stimulation, respectively.

However, it is not clear at present by what mechanism EGCG act’s as an anti-oxidant or a
pro-oxidant, although difference in cell types and different cellular concentrations including those of
EGCG itself, metal ions, and the co-presence of other anti-oxidants may be important factors [42,53].
It can be assumed that either the anti-oxidant and pro-oxidant activities are involved in various
mechanisms by which EGCG exerts anti-cancer effects (Figures 2 and 3).

2.3.2. Anti-Inflammatory Effects

Chronic inflammation is thought to have an important role on the onset and progression
of human cancer by modulating the tumor microenvironment [54]. A number of studies have
provided evidence EGCG’s anti-inflammatory effects. These studies found that EGCG can inhibit
activation of transcription factors such as NF-κB, activating protein-1 (AP-1), MyD88-dependent
signaling pathway, Toll-interleukin-1 receptor domain-containing adaptor inducing interferon-β
(IFN-β)-dependent signaling pathways of Toll-like receptors, and expressions of inflammatory genes
including cyclooxygenase (COX), NO synthase, and TNF-α [42,43,55]. Many of these actions may be
interpreted by EGCG’s anti-oxidant activity (Figure 2). For example, ROS can induce NF-κB activation
which in turn promotes biosynthesis of COX, NO, and TNF-α and, therefore, scavenging ROS by
EGCG would lead to its anti-cancer effects [2,42] (Figure 2).

2.3.3. Anti-Angiogenic Effects

Angiogenesis is the process characterized by the development of new blood vessels from the
pre-existing vessels, which supply a tumor with oxygen and nutrients to allow optimal growth.
Anti-angiogenesis is thought to be one of the most promising methods of cancer treatment [56].
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Cancer cells can adopt to the hypoxic microenvironment by expressing hypoxia-inducible factors-1
(HIF-1) and thereby increasing the levels of its downstream target vascular endothelial growth factor
(VEGF), which promotes tumor growth, angiogenesis, and metastasis [57–59]. EGCG was shown to
decrease the protein expression of HIF-1α and VEGF proteins in gastric cancer SGC7901 cells under
hypoxia induced by cobalt chloride [59].

In a study in which C57BL/6J mice inoculated with 106 mouse breast cancer E0771 cells in the
mammary gland fat pad, oral intake of EGCG at 50–100 mg/kg/day for 4 weeks reduced tumor weight,
capillary density and tumor VEGF expression by 65, 30 and 23%, respectively, compared to control.
EGCG at 50 µg/mL significantly inhibited the activation of HIF-1α and NF-κB as well as VEGF
expression in cultured E0771 cells. These findings indicate that EGCG exerts anti-cancer effect by
inhibiting angiogenesis mediated by the downregulation of VEGF, HIF-1α and NF-κB [60].

Wu et al. [61] found that EGCG inhibited the proliferation, viability, and cell cycle progression
in three types of human thyroid carcinoma cells by decreasing the migration and invasion and
increasing apoptosis. EGCG downregulated molecular signaling factors such as epidermal growth
factor receptor (EGFR), extracellular signal-regulated kinase 1/2 (ERK1/2), and mitogen-activated
protein kinase (MAPK) and inhibited tumor microvessel density dose-dependently in xenografts of
these cells (Figure 2). Induction of angiogenesis by VEGF is caused by binding to its receptors on the
surface of endothelial cells. Kondo et al. [62] reported that EGCG (1.56 to 100 µM) inhibited VEGF
binding to its receptors in a dose-dependent manner.

Alternatively, EGCG’s anti-angiogenic action may be related to its pro-oxidant activity. EGCG
may induce generation of ROS to promote apoptosis which is known to be the primary action of many
anti-cancer drugs. ROS can up-regulate, perhaps indirectly, AMPK which modulates expressions of
a number of proteins [3]. ROS-mediated activation of AMPK can lead to downregulation of mTOR,
resulting in downregulation of VEGF (Figure 3) [2,36]. Therefore, EGCG’s pro-oxidant property can
decrease the level of VEGF in cancer cells and tissues.

2.3.4. Induction of Apoptosis

Induction of apoptosis or programmed cell death is one of the most important mechanisms for
EGCG to exert anti-cancer effects. Several studies have provided evidence for the induction of apoptosis
by EGCG and its mechanism of action. ROS can stimulate gene expression of B-cell lymphoma-2 (Bcl-2)
via activation of NF-κB and therefore, EGCG’s scavenging activity of ROS is expected to downregulate
the anti-apoptotic protein Bcl-2 (Figure 2), leading to apoptotic cell death of cancer cells (Figure 2).

Meanwhile, EGCG may induce apoptosis through enhancing ROS production (Figure 3). Das et
al. [63] demonstrated that EGCG induced apoptosis via triggering ROS production with phosphorylation
of p38 MAPK and activation of the redox-sensitive c-Jun N-terminal kinase-1 pathway. EGCG was
also found to induce overexpression of apoptosis regulator Bcl-2 associated X (Bax) and activation of
calpain, caspase-9, caspase-3, and caspase-8. It is noteworthy that EGCG did not induce apoptosis in
human normal astrocytes [63].

Zan, et al. [64] reported that 5 and 20 µg/mL of EGCG induced apoptosis in breast cancer
MCF-7 cells via the activation of caspase-9, caspase-3, and poly (ADP-ribose) polymerase-1 cleavage.
Kwak et al. [65] also showed that 5 µg/mL of EGCG caused apoptosis in human cholangiocarcinoma
HuCC-T1 cells through the increase of pro-apoptotic protein Bax and activation of caspase-9 and
caspase-3, and cytochrome c release. Similarly, Jian et al. [66] found that EGCG induced apoptosis in
human hepatocellular carcinoma (HCC) HepG2 cells and rat pheochromocytoma PC12 cells through
downregulation of Bcl-2 and upregulation of Bax.

Sterol-response element binding protein-1 (SREBP-1), a nuclear transcription factor mainly
involved in lipid metabolism, is also downregulated by AMPK (Figure 3). SREBP-1 is expressed at higher
levels in patients with large tumor size, high histological grade and advanced tumor-node-metastasis
stages. Downregulation of SREBP-1 inhibited cell proliferation and induced apoptosis in both HepG2
and MHCC97L cells and SREBP-1 knockdown inhibited cell migration and invasion in both cancer
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cell types [67]. Since EGCG’s suppression of the expression of SREBP-1 through the activation of the
AMPK pathway in sebocytes was reported [68], this EGCG’s inhibition may be expected to contribute
to its anti-cancer effect (Figure 3).

2.3.5. Epigenetic Modifications

Epigenetic modifications represent post-translational changes in histones and DNA such as
methylation and acetylation as well as dysregulation of microRNAs (miRNAs) expression [69].
Noncoding RNAs (ncRNAs) consist of miRNAs and long noncoding RNAs (lncRNAs) where miRNAs
are defined as small single-stranded molecules (ca. 20 to 25 nucleotides) and lncRNAs as RNA
molecules larger than 200 nucleotides. These ncRNAs are implicated in various cellular processes
through regulating gene expression at the transcriptional and post-transcriptional level and thought to
play roles in various diseases including cancer [70].

One mechanism involved in anti-cancer effects exerted by EGCG is such epigenetic modifications.
The inhibitors of DNA methyltransferase (DNMT) and histone deacetylase (HDAC) are expected to be
promising anti-cancer drugs. Fang et al. [71] demonstrated that EGCG inhibited DNMT activity with a
Ki of 6.89 µM. Similarly, Pal et al. [72] showed that 10 µg/mL of EGCG decreased the proliferation of
HeLa cells and expression of DNMT-1. Khan et al. [73] showed that EGCG inhibited the expression of
DNMT-3B and HDAC-1 in a time-dependent manner in human cervical carcinoma HeLa cells.

In a review by Aggarwal et al. [32] the authors summarized the effects of EGCG on various cancers
reported in 11 studies. In an experiment using cervical carcinoma cell lines, EGCG inhibited HeLa
cells growth in a dose- and time-dependent manner [74]. EGCG caused downregulation of miR-125b
and upregulation of miR-210 and miR-29 in HeLa cells and also upregulation of miR-210 and miR-29
expressions in CaSKi and SiHa cells. EGCG’s upregulation of miR-210 was also found in experiments
using lung cancer cells and a nude mouse model [75]. Overexpression of miR-210 led to reduction in
cell proliferation and anchorage-independent cell growth [75].

In addition, Aggarwal et al. [32] described three studies in which EGCG upregulated the let-7
family miRNAs, which were implicated to function as a tumor suppressor and cause down-regulation
of high mobility group-A2, a target gene related to tumor progression via 67-kDa laminin receptor
(67LR)-binding in melanoma cells [76].

In another study, EGCG was demonstrated to decrease the expression of p53 gene-targeting
miRNAs (miR-25, miR-92, miR-141, and miR-200a) in multiple myeloma cells [77]. The data suggest
that EGCG can reverse the elevated expression of miRNAs which downregulate p53 in cancer cells
and exert its anti-cancer effect via recovery of the activity of tumor suppressor p53. In harmony with
this finding, EGCG was shown to stabilize p53 to upregulate its transcriptional activity leading to
apoptosis in prostate cancer LNCaP cells [78]. It should be noted that EGCG downregulated miR-25
and miR-92 in multiple myeloma cells but upregulated them in HCC [77]. The difference may be due
to cell-specific effect but further studies are required to understand the EGCG’s effects on miRNAs.

Hu et al. [79] demonstrated that EGCG inhibited the growth of lung cancer A549 and NCI-H460
cells in a concentration-dependent manner. They identified an upregulation of RP1-74M1.3, AC087273.2,
SNAI3-AS1, LINC02532, and AC007319.1 lncRNAs and downregulation of HMMR-AS1, AL392089.1,
PSMC3IP, LINC02643, and H19 lncRNAs in EGCG-treated A549 cells. These lncRNAs are distributed
across nearly all human chromosomes and EGCG affected lncRNAs expressions, suggesting that EGCG
can regulate the expression of ncRNAs to exert anti-cancer activity in several types of cancer.

2.3.6. Molecular Docking Analysis of EGCG’s Binding to Cancer-Related Proteins

A number of studies have demonstrated that the binding affinity of EGCG to proteins contributes
to its anti-cancer mechanism. There are several physicochemical methods to examine molecular
interaction between EGCG and proteins. In 1997, our research group conducted for the first time affinity
chromatography using EGCG-agarose gel to demonstrate that EGCG binds to matrix metalloproteinase
(MMP)-2 and MMP-9 which are intimately associated with cancer cell invasion and metastasis [80].
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EGCG inhibited activities of these enzymes, leading to anti-cancer effects like batimastat (BB-94), a
synthetic MMP inhibitor that inhibits tumor growth, local invasion, and lung metastasis of orthotopic
metastatic human HCC in nude mice model [80,81]. Later, the binding interaction between EGCG and
MMP-2 and MMP-9 was confirmed by computational molecular docking analysis (MDA) [82].

In our previous review article, we discussed binding interactions between EGCG and
other cancer-related proteins revealed by affinity chromatography and pull-down methods using
EGCG-agarose gel [82]. These include fibronectin, vimentin, heat shock protein 90, glucose-regulated
protein 78 kDa (GRP78), insulin-like growth factor-1 receptor, Src-related proto-oncogene Fyn protein,
ζ chain-associated 70-kDa protein, Ras-GTPase-activating protein Src homology (SH3) domain-binding
protein-1, peptidyl-prolyl cis-transisomerase, and TNF receptor-associated factor-6. Most of these
interactions were confirmed by MDA [82].

Similarly MDA revealed the binding interaction between EGCG and VEGF, VEGF receptors,
tyrosine kinases, urokinase, chymotrypsin, DNMT, protein phosphatases, and signal transducer and
activator of transcription-3 [83]. These protein-binding interactions are likely to be involved in EGCG’s
anti-cancer effects.

2.3.7. Roles of 67LR in EGCG’s Anti-Cancer Effects

One of the EGCG’s most important interactions may be that with 67LR, which was discovered
by a surface plasmon resonance technique as discussed in several papers [84–86]. EGCG was shown
to bind 67LR at physiologically available concentrations (0.1–1.0 µM) and to mediate many of its
beneficial activities, including anti-cancer effect. EGCG binding to 67LR via eukaryotic elongation
factor-1A causes the phosphorylation of myosin phosphatase targeting subunit-1 and activates myosin
phosphatase which dephosphorylates its substrates such as myosin regulatory light chain, resulting in
actin cytoskeleton rearrangement leading to cell growth inhibition [84,86].

3. Anti-Cancer Effects of Coffee

3.1. Human Studies on Anti-Cancer Effects of Coffee

Coffee is the second most consumed beverage worldwide after tea. Some early epidemiological
studies suggested that coffee consumption was associated with an increased cancer risk [87]. For
example, Yu et al. [88] described that daily coffee consumption is a risk factor in females for renal
cell carcinoma. Based on the results of 32 epidemiological studies, Wierzejska found that several
studies showed that coffee consumption had no or even unfavorable association with colorectal, breast,
bladder, prostate, lung and pancreatic cancers, but emphasized that other studies showed promising
results for these cancers and liver cancer [87].

Several early RCT suggested the coffee’s favorable effects on cancers as exemplified by following
findings: When 64 participants were randomly assigned into two groups and consumed 1000 mL
of cafetière coffee daily or no coffee for intervention and washout periods, the result indicated that
unfiltered coffee significantly increased the glutathione content by 8% in the colorectal mucosa and by
15% in plasma [89]. The increase in the detoxification capacity and anti-mutagenic properties in the
colorectal mucosa through an increase in glutathione concentration suggests the possible lowering
effect on the colon cancer risk [89].

A clinical trial with 10 participants found that consumption of 1L unfiltered coffee/day over 5
days resulted in a weak induction of glutathione-S-transferases (GSTs) and 3-fold increase in induction
of placental type GST in blood, although other clinical markers for organ damage such as creatinine,
aminotransferases, and alkaline phosphatase were not altered [90]. The finding suggests that coffee’s
induction of placental type GST may lead to protection from chemical carcinogenesis.

In a controlled intervention trial with a cross-over design with 38 participants, consumption of
800 mL coffee daily over 5 days demonstrated the decrease by 12.3% in the extent of DNA-migration
attributable to formation of oxidized purines, although other biochemical parameters such as the total
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anti-oxidant levels in plasma, glutathione concentrations in blood, and the activities of superoxide
dismutase and glutathione peroxidase in lymphocytes were not markedly altered. The result indicates
that coffee consumption prevents endogenous formation of oxidative DNA-damage in human [91].

Recent evidence has also suggested that coffee drinking may have health benefits on some types
of cancer. A review by an International Agency for Research on Cancer working group conducted in
2016 on a large number of epidemiological and experimental studies on anti-cancer effects of coffee
found an inverse association for liver and endometrial cancers [92].

Similarly, a comprehensive review of the beneficial effects of coffee and its components on
gastrointestinal and liver carcinogenesis summarized observational epidemiological studies: four
studies on oropharyngeal cancer, four on esophagus cancer, four on stomach cancer, four on CRC, and
seven HCC [11]. Comparing the highest and lowest consumptions, all study results showed 31–37%
risk reduction in oropharyngeal cancer, no risk reduction in esophagus cancer, no risk reduction in
CRC and 34–43% risk reduction in HCC, although some subgroup analyses gave different results. In
the case of stomach cancer, one study found reduced risk, two no effect and one increased risk. These
results indicate that the coffee’s benefit might be limited to liver cancer.

In addition, a recent meta-analysis of observational studies on associations between coffee intake
and 26 different cancers including 364,749 cancer cases provided evidence to show that coffee intake is
inversely associated with endometrial cancer, liver cancer, melanoma, oral cancer, and oral/pharyngeal
cancer [93]. Additional evidence was also obtained to suggest the reduced risk of cancers of the mouth,
pharynx and larynx, and skin cancer. Coffee consumption may also be inversely associated with breast,
colon, colorectal, esophageal and nonmelanoma skin cancers.

Conversely, the same analysis showed the conflicting result whereby a higher coffee intake was
associated with an increased risk of childhood acute lymphocytic leukemia, bladder cancer, and
possibly lung cancer [93]. Similarly, a more recent pooled analysis of 12 cohort studies, comprising of
2601 cases out of 501,604 participants found a significantly increased risk for bladder cancer in male
smokers: when compared the consumers of >4 cups/day with the non-consumers, hazard ratios were
1.75 (CI = 1.27–2.42) for current smokers and 1.44 (CI = 1.12–1.85) for former smokers [94].

In a review on the association of CRC risk with coffee, caffeinated coffee and decaffeinated
consumptions, Buldak et al. [10] discussed eight, seven and three observational epidemiological studies
showing no association, inverse association, and association with increased risk, respectively. These
authors pointed out that caffeine is not an important component for coffee to exhibit the anti-cancer
activity, since several studies found significant inverse correlation for both caffeinated and decaffeinated
coffee consumptions.

A recent RCT on 160 healthy human subjects who consumed 3 or 5 cups of coffee per day for
8 weeks found that blood pressure, oxidation of DNA and lipids, blood levels of glucose, insulin,
cholesterol, triglycerides, and inflammatory markers were unchanged, although a slight elevation
of serum creatinine level and a significant elevation of serum γ-glutamyltransaminase levels in the
5 cups/day group [95]. The results indicated no detectable effects, either beneficial or harmful, on
human health.

Thus, these findings from clinical studies are conflicting. The recall bias and confounding effects
including tobacco smoking, a method for brewing coffee, differences in ingredients, and genetic
background may contribute to these differences.

3.2. Comparison of Anti-Cancer Effects of Tea and Coffee in Simultaneous Human Studies

Several epidemiological studies have examined the anti-cancer effects of tea and coffee at the
same time. For example, the European Prospective Investigation into Cancer and Nutrition on 486,799
subjects with a median follow-up of 11 years found that both coffee and tea intakes were inversely
associated with HCC risk. Coffee and tea consumers in the highest compared to the lowest quintile
had lower HCC risk by 72% and 59%, respectively [96]. In a study in which 10,399 of total 97,334
subjects developed cancers of 145 head and neck, 99 oesophageal, 136 stomach, 1137 lung, 1703 breast,
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257 endometrial, 162 ovarian, 3037 prostate, 318 kidney, 398 bladder, 103 gliomas, and 106 thyroid,
tea consumption of ≥1 cups/day was inversely associated with cancer overall combined (RR = 0.95,
CI = 0.94–0.96) as compared to <1 cup consumption, but no association of coffee consumption with
the risk of all cancers combined was found. However, coffee intake decreased a risk for endometrial
cancer (RR = 0.69, 95% CI = 0.52–0.91 for ≥2 cups per day), while tea did not [97].

A meta-analysis of 12 case-control studies, comprising a total of 3649 cases and 5705 controls
found that a high maternal coffee consumption increased a risk of acute lymphoblastic leukemia in
childhood (OR = 1.43), whereas low to moderate tea consumption was inversely associated (odds ratio
(OR) = 0.85, CI = 0.75–0.97), although the trend was not significant [98].

Table 2 shows a brief comparison of anti-cancer effects of tea and coffee in simultaneous studies
reported since 2018 based on the Medline data base. Several investigations revealed that tea and coffee
may have different effects in some cancer types. It is noticeable that coffee may increase a risk in certain
types of cancer (bladder cancer, lung cancer, and childhood leukemia) in line with the finding from
aforementioned studies which examined effects of either tea or coffee, individually [93].

Table 2. Comparison of anticancer effects in humans between tea and coffee.

Cancer Type Tea/Green
Tea/Black Tea *

Coffee/Caffeinated
Coffee/Decaffeinated Coffee *

Type of Epidemiological Study
[Reference]

Bladder ↓ +/− Cohort study [100]

Bladder +/− ↑
Meta-analysis of cohort study and

case-control study [101]

Brain ↓ ↓
Meta-analysis of cohort study and

case-control study [102]

Breast +/− +/− Cohort study [103]

Colorectal +/− +/− Cohort study [104]

Colorectal ↓ +/− Case-control study [105]

Endometrial +/− ↓ Case-control study [103]

Glioma ↓ +/− Cohort study [106]

Glioma ↓ ↓ Case-control study [107]

Leukemia, acute myeloid +/− +/− Cohort study [108]

Leukemia, childhood
acute myeloid +/− ↑ Meta-analysis of case-control study [109]

Leukemia, childhood
acute lymphoblastic +/− ↑ Meta-analysis of case-control study [99]

Liver +/− ↓ Cohort study [110]

Liver +/− ↓
Meta-analysis of cohort study and

case-control study [24]

Lung ↓ ↑ Cohort study [111]

Lymphoma,
non-Hodgikin’s ↓ +/−

Meta-analysis of cohort study and
case-control study [112]

Melanoma, cutaneous +/− ↓ Meta-analysis of cohort study [113]

Ovarian +/− +/− Cohort study [103]

Prostate +/− +/− Cohort study [114]

Renal cell carcinoma +/− +/− Cohort study [100]

Skin cancer,
non-melanoma ↓ ↓ Cohort study [115]

Stomach +/− +/−
Meta-analysis of cohort study and

case-control study [25]

Thyroid +/− +/− Cohort [116]

* Risk decrease, risk increase and no effect are shown by ↓, ↑, and +/−, respectively.

The reason for the difference is not known at present. As pointed out by Milne et al. [99], the fact
that both tea and coffee contain numerous different compounds, are prepared by various methods, and
have differences in bioavailability makes it difficult to determine the factor(s) involved in the difference.
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3.3. Basic Research on Anti-Cancer Action of Coffee and CGA

A number of cell-based and animal studies have provided evidence to support anti-cancer effects
of coffee and CGA [117–120]. Salomone et al. [118] have elegantly discussed molecular basis of
anti-cancer effects of coffee and some of its components including CGA. They summarized the results
of 10 animal studies showing anti-cancer effects of coffee and CGA as examined in experimental models
of liver cancer. For example, in an experiment of Miura et al. [119] coffee inhibited the proliferation
and invasion of rat ascites hepatoma AH109A cells and the serum from rats given coffee orally also
exhibited anti-proliferative and anti-invasive activities against these cells.

Similarly, Buldak et al. [10] reviewed the human and basic studies on anti-cancer effects of coffee
and its components on CRC. These authors discussed the results of three cell-based studies on CGA.
In an experiment by Hou et al. [120], CGA was shown to inhibit the proliferation of human colon
cancer HCT116 and HT29 cells. CGA induced ROS generation and cell cycle arrest at the S phase, and
suppressed the activation of ERK in both cell types, leading to the anti-cancer effect against CRC.

More recently, Romualdo et al. [11] discussed these issues on the basis of animal studies of the
effects of coffee and CGA on oral and esophagus cancers (four studies), colon cancer (nine studies) and
HCC (four studies). For example, the included data showed that two of four studies of coffee and four
of five studies of CGA demonstrated beneficial effects on colon cancer. These authors summarized the
mechanistic aspects of CGA’s action which are associated with molecular pathways involving ROS
and others such as Bax, interleukin (IL)-8, caspase-3, MMPs and miR-21. Although these articles also
reviewed comprehensively other coffee components such as caffeine, caffeic acid, and kahweol, this
review focuses CGA which is considered to be the major player in the coffee’s anti-cancer mechanism
as discuss below.

3.4. Mechanisms of CGA’s Action against Cancer

3.4.1. Anti-Oxidant and Pro-Oxidant Properties, Anti-Inflammatory Effects, Anti-Angiogenic Effects
and Apoptosis-Inducing Activity of CGA

CGA’s involvement in anti- and pro-oxidant actions, anti-inflammatory effects, anti-angiogenic
effects, and apoptosis-inducing activity of coffee has often been documented [7,11,48,118,120–122].
Examples are as follows:

Cha et al. [123] demonstrated that UVB gave damage to cellular DNA in human HaCaT cells, as
demonstrated in a comet assay, but CGA pre-treatment prior to UVB irradiation prevented oxidative
DNA damage and increased cell viability. Rakshit et al. [124] found that CGA induced an early
accumulation of intracellular ROS and apoptosis in chronic myeloid leukemia cells.

Feng et al. [121] found that CGA inhibited the proliferation of A549 human cancer cells in vitro and
that CGA suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic transformation
of JB6 P+ cells. CGA decreased UVB- or TPA-induced transactivation of AP-1 and NF-κB, the
phosphorylation of c-Jun NH2-terminal kinases, p38 kinase, and MAPK kinase-4 induced by UVB or
TPA. The results also showed that CGA stimulated the nuclear translocation of NF-E2-related factor
(Nrf2) as well as subsequent induction of GST-A1 anti-oxidant response element (ARE)-mediated GST
activity. These results suggest that the chemopreventive effects of CGA may be through its up-regulation
of cellular anti-oxidant enzymes via stimulation of Nrf2 and suppression of ROS-mediated NF-κB,
AP-1, and MAPK activation [121].

Liang and Kitts reviewed anti-oxidative and anti-inflammatory effects of CGA [122]. They
discussed five cell-based studies and two animal experiments, in which downregulation of ROS was
demonstrated, and 10 experiments, most of which showed downregulation of inflammation-related
cytokines such as IL-1β, TNF-α and IL-6. Four such studies revealed downregulation of NF-κB.

When anti-inflammatory effect of CGA was examined in lipopolysaccharide-stimulated murine
RAW 264.7 macrophages and BV2 microglial cells, CGA inhibited NO production, the expression of
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COX-2 and inducible NO synthase, and attenuated pro-inflammatory cytokines such as IL-1β and
TNF-α via inhibition of the nuclear translocation of NF-κB [125].

In an attempt to evaluate the effects of CGA on retinal neovascularization in a mouse model
of oxygen-induced retinopathy, Kim et al. [126] found that CGA inhibited VEGF-mediated tube
formation in human vascular endothelial cells and that the neovascular area was significantly smaller in
CGA-treated mice than in the vehicle-treated mice, demonstrating the CGA’s anti-angiogenic property.

Most of these results are related to modulation of ROS and the aforementioned mechanisms by
which EGCG exerts its anti-cancer effects might be applicable to CGA. Figures 2 and 3 show possible
modulations by CGA, although individual pathways in which CGA is involved have not necessarily
been reported. Figure 2 illustrates CGA’s downregulation of ROS [2,11,48,120,127], DNA damage [123],
EGFR [127], Akt/phosphatidyl 3-inositol kinase (PI3K) [127], ERK1/2 [11,127], NF-κB [2,121,125,127,128],
TNF-α [2,122], IL-1β [122], IL-8 [2,11], IL-6 [122], MMPs [2,11], COX-2 [125,128], Bcl-2 [10,129],
mTOR [10,127], VEGF [126], and upregulation of AMPK [7,49]. Although CGA’s upregulation of
CaMKK and LKB1 shown in Figure 3 has not been determined yet, Park et al. [130] reported upregulation
of them by neochlorogenic acid, an isomer of CGA. Thus, EGCG and CGA would be expected to exert
anti-cancer effects by modulating similar molecular pathways to each other in many cases.

3.4.2. Epigenetic Modification by CGA

Increased levels or alterations in the function of DNMT-1 are associated with the inactivation of
tumor suppressor genes. Liu et al. [131] showed that CGA inhibited the proliferation, colony formation,
invasion, and metastasis of HepG2 cells both in vitro and in vivo by down-regulating DNMT-1 protein
expression, which enhanced p53 and p21 activity, and resulting in a significant reduction in cell
proliferation and metastasis. Moreover, CGA inactivated ERK1/2 and reduced MMP-2 and MMP-9
expression in HepG2 cells. These findings suggest that CGA exhibits anti-cancer effects through several
pathways. Using synthetic DNA substrates, Lee and Zhu found that CGA inhibited human DNMT-1
activity with an IC50 value of 0.9 µM. In MCF-7 and MAD-MB-231 human breast cancer cells, CGA
inhibited the methylation of the promoter region of the retinoic acid receptor β gene [132].

Mira and Shimizu found the methanol extract of the medical herb Angelica shikokiana and some
of its components including CGA showed cytotoxicity against various cultured cells and inhibited
tubulin polymerization [133]. CGA was shown to inhibit activity of HDAC-8 (IC50 = 8.62 µM).

Hongtao et al. [134] found that CGA blocked the proliferation of non-small cell lung cancer cells.
CGA inhibited HDAC-6 and MMP-2 activities through reduction in expression of acetylated NF-κB,
the level of which is positively associated with the transcription of pro-inflammatory cytokines [134].
The results suggest CGA’s anti-cancer effect through suppression of HDAC-6 activity. In line with these
findings, an inhibition experiment with HeLa cell nuclear extracts and MDA conducted by Bora-Tatar
et al. [135] demonstrated that CGA is the highly potent inhibitor compared to sodium butyrate, which
is a well-known HDAC inhibitor.

Several studies have examined effects of CGA on miRNAs. The results of a study, in which
hepatic stellate LX2 cells and CCl4-induced liver fibrosis model rats are used, indicated that CGA
inhibited the mRNA expression of miR-21, Smad7, connective tissue growth factor, α-smooth muscle
actin, tissue inhibitor of metalloproteinase 1, MMP-9, and transforming growth factor-β1 (TGF-β1),
suggesting that CGA relieves liver fibrosis through the miR-21-regulated TGF-β1/Smad7 signaling
pathway [136]. Similar results were reported by Wang et al. [137] who showed that CGA could inhibit
schistosomiasis-induced liver fibrosis through IL-13/miR-21/Smad7 signaling interactions in LX2 cells
and schistosome-infected mice. Since liver fibrosis is a key factor for the risk of HCC [138], CGA might
be useful for its prevention.

Induction of cancer differentiation may be a promising strategy to treat cancer. CGA reduced
proliferation rate and migration/invasion ability in human hepatoma Huh7 and lung H446 cancer
cells through elevation of small ubiquitin like modifier-1 expression by acting on its 3′-untranslated
region and stabilizing the mRNA, leading to downregulation of miR-17 family member miR-20a, -93,
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and -106b. The xenograft experiments using these cells gave similar results. NOD/SCID mice which
received i.p. administration of 25–200 mg/kg/day of CGA demonstrated tumor growth inhibition and
administration of 25 mg/kg caused downregulation of miR-17 family members [139].

3.4.3. MDA of CGA’s Binding to Cancer-Related Proteins

The results of MDA showed that quercetin, rutin, and CGA can bind to MMP-1, MMP-3, and
MMP-10 [140]. MDA of CGA and carbonic anhydrase IX showed the high affinity which is attributable
to the strong interaction with enzyme active site through the formation of eight hydrogen bonds with
the active site residue [141].

MDA for natural products which may interfere with SARS-CoV-2 attachment to the host cell found
that CGA had the good average binding affinity to the cell-surface heat shock protein A5 (GRP78) of
−7.10 ± 0.96 kcal/mol [142].

P-glycoprotein is associated with multidrug resistance as a drug efflux protein. CGA exhibited
anti-proliferative effect on the mouse T-cell lymphoma L5178 cells with an IC50 = 0.06 ± 0.003 µg/mL
and reversed multidrug resistance. MDA revealed that CGA can bind to three different sites which are
known to be bound by verapamil with similar binding energies of around 7 kcal/mol [143].

CGA induced apoptosis in a dose-dependent manner with an IC50 of 75.88 ± 4.54 µg/mL and
52.5 ± 4.72 µg/mL in MDAMB-231 and MCF-7 cells, respectively. CGA binds to protein kinase C in a
concentration-dependent manner with a Kd of 28.84 ± 3.95 µM and MDA suggested that CGA fits into
the C1b domain of protein kinase C [144].

By UPLC-MS/MS analysis, Taha et al. [145] identified 22 compounds in the extracts of the fruits of
Nandina domestica Thunb. which have served as a folk medicine in therapies of some types of cancer.
MDA of CGA and some other compounds revealed strong interactions with the cancer-related proteins
Akt1, caspase-3, MAPK-1 and tumor suppressor TP53.

4. Conclusions

The present review has discussed the anti-cancer effects of green tea and coffee based on
epidemiological and intervention studies. These studies have provided evidence to show favorable
effects on some types of cancer such as breast, colon, lung and blood cancers by green tea consumption
(Tables 1 and 2) and those such as liver, endometrial, and skin cancers by coffee consumption (Table 2).
Thus, green tea and coffee are likely to have some differences in site-specific anti-cancer effects.

Meanwhile, considerable studies have reported conflicting results, presumably due to confounding
factors such as the method of quantifying consumption, beverage temperature, cigarette smoking,
alcohol consumption, and differences in genetic and environmental factors such as race, sex, and age,
lifestyle, intestinal microbiota and genetic polymorphisms [2,34,42]. Therefore, more rigorous human
studies are necessary to establish the anti-cancer effects of consumption of these beverages.

This review has also provided evidence to show anti-cancer effects of EGCG and CGA based on
cellular and animal experiments. These experiments have proposed several mechanisms through which
EGCG and CGA exert their anti-cancer effects. Among them, the mechanism involving downregulation
of ROS appears to explain commonly their anti-cancer actions (Figure 2). Another important mechanism
may be related to ROS generation as shown in Figure 3.

Meanwhile, interpretations for the different anti-cancer effects between green tea and coffee need
to be clarified. One possible explanation is the difference in interaction with target molecules. For
example, binding interaction has not been reported between CGA and 67LR that is an important target
of EGCG. The difference in co-existing molecules may also contribute to the different effects. For
example, animal experiments showed that caffeic acid present in coffee exhibited carcinogenicity in the
rat stomach [146,147] which may cancel the CGA’s anti-cancer effect. Differences in by-products such
as acrylamide generated during roasting and brewing and heavy metals and aflatoxin A which may
have contaminated can be a reason [11,22,89].
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In addition, some studies suggested a risk increase in certain types of cancers such as esophageal
and gynecological cancers in green tea consumption [14] and bladder and lung cancers in coffee
consumption (Table 2). The reason for these observations may be clarified in future studies.
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