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Abstract: Tea is one of the most widely consumed beverages worldwide, and is available in various
forms. Green tea is richer in antioxidants compared to other forms of tea. Tea is composed of polyphenols,
caffeine, minerals, and trace amounts of vitamins, amino acids, and carbohydrates. The composition
of the tea varies depending on the fermentation process employed to produce it. The phytochemicals
present in green tea are known to stimulate the central nervous system and maintain overall health in
humans. Skin aging is a complex process mediated by intrinsic factors such as senescence, along with
extrinsic damage induced by external factors such as chronic exposure to ultraviolet (UV) irradiation—A
process known as photoaging—Which can lead to erythema, edema, sunburn, hyperplasia, premature
aging, and the development of non-melanoma and melanoma skin cancers. UV can cause skin damage
either directly, through absorption of energy by biomolecules, or indirectly, by increased production
of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Green tea phytochemicals are a
potent source of exogenous antioxidant candidates that could nullify excess endogenous ROS and RNS
inside the body, and thereby diminish the impact of photoaging. Several in vivo and in vitro studies
suggest that green tea supplementation increases the collagen and elastin fiber content, and suppresses
collagen degrading enzyme MMP-3 production in the skin, conferring an anti-wrinkle effect. The precise
mechanism behind the anti-photoaging effect of green tea has not been explored yet. Studies using the
worm model have suggested that green tea mediated lifespan extension depends on the DAF-16 pathway.
Apart from this, green tea has been reported to have stress resistance and neuroprotective properties. Its
ROS scavenging activity makes it a potent stress mediator, as it can also regulate the stress induced by
metal ions. It is known that tea polyphenols can induce the expression of different antioxidant enzymes
and hinder the DNA oxidative damage. Growing evidence suggests that green tea can also be used
as a potential agent to mediate neurodegenerative diseases, including Alzheimer’s disease. EGCG,
an abundant catechin in tea, was found to suppress the neurotoxicity induced by Aβ as it activates
glycogen synthase kinase-3β (GSK-3β), along with inhibiting c-Abl/FE65—the cytoplasmic nonreceptor
tyrosine kinase which is involved in the development of the nervous system and in nuclear translocation.
Additionally, green tea polyphenols induce autophagy, thereby revitalizing the overall health of the
organism consuming it. Green tea was able to activate autophagy in HL-60 xenographs by increasing
the activity of PI3 kinase and BECLIN-1. This manuscript describes the reported anti-photoaging, stress
resistance, and neuroprotective and autophagy properties of one of the most widely known functional
foods—green tea.
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1. Introduction

Tea is one of the most widely consumed beverages worldwide, and is the second-most consumed
drink after water [1]. It is produced from the leaves, buds, or delicate stems of the plants of the genus
Camellia. The most widely used plant species for tea is Camellia sinensis (L.) Kuntze. Inhabitants of
Europe, mainly Great Britain, are the largest consumers of tea (~540 mL) per day [2]. However, on
average across the world population, a person consumes ~120 mL of tea per day [3]. Tea is available
in three major forms—Green tea, oolong tea, and black tea—depending on the level of antioxidants
present and the degree of fermentation [1,4]. According to the available literature, tea was first
consumed as a drink or medicine by the Chinese population around 2737 BC [5]. Presently, tea is
consumed in almost all countries worldwide, and China, India, and Kenya are the major producers of
tea, even though it is cultivated on six continents [6,7]. Approximately three billion kilograms of tea is
produced and consumed worldwide per year [8].

Tea mainly consists of polyphenols, caffeine, minerals, and trace amounts of vitamins, amino
acids, and carbohydrates. The type of polyphenols present in tea will vary depending upon the level
of fermentation it has undergone. Green tea mainly consists of catechins, whereas black tea mainly
contains tannins [3]. Notably, green tea is considered the most predominant source of catechins among
all dietary sources, ahead of chocolate, red grapes, wine, and apples [9]. The caffeine in tea leaves
ranges between 2 and 5%, depending on the age of the leaf, wherein younger leaves will have a higher
concentration [10]. Tea is known to stimulate the central nervous system and cardiac function in
humans [3]. Different minerals, like fluoride, manganese, chromium, selenium, calcium, magnesium,
and zinc, are present in tea leaves in different concentrations depending upon the fermentation process,
age, and size of tea leaves [9].

According to the European Food Safety Authority (EFSA), 126 mg of catechins are present per
100 mL of green tea. However, according to the Food and Drug Administration (FDA), 71 mg of
epigallocatechin gallate will be present per 100 mL of green tea. In the case of black tea, 200 mg of
flavonoids are present per 100 mL [11].

Tea was considered an effective medicine for treating different ailments in ancient Asian folk
medicine [3]. It is known for its abundance of antioxidants. Presently, numerous research findings
suggest the role of tea in mediating the proper functioning of the cardiovascular system, reduction
of body mass, and even decreasing the risk of cancer and neurodegenerative diseases [12]. Tea is
considered a functional food since it can impart many physiological benefits apart from its nutritional
contents [8]. Its antioxidant property makes it a predominant regulator in mediating free radicals,
which is of significant use in healthcare.

Aging can be defined as the progressive loss of the cells, tissues, and organs of an individual
across the lifespan [13,14]. Periodic and continuous exposure to ultraviolet (UV) radiation will induce
such changes, predominantly in the skin of an individual, which could be characterized by burning,
tanning, loosening of the collagen and elastin fibers, and reduced integrity of the skin, which are
collectively known as photoaging [15,16]. Sunscreens can be applied which either absorb or reflect
UV radiation, thereby protecting the skin [17]. However, continuous application of sunscreens could
have a negative effect on certain people [18,19]. Individuals with sensitive skin may still be affected
by UV radiation even when using sunscreen, since sunscreen does not give 100% protection from
UV radiation due to not addressing heat accumulation. Additionally, several chemical compounds
are added in sunscreens to induce broad-spectrum activity, and these can have a negative effect on
sensitive skin [18]. In this regard, compounds derived from natural sources with the desired properties,
which could achieve similar benefits when compared to using synthetic compounds, are of significant
interest. Green tea is one such product, and is widely known and used by people all over the world for
its proposed benefits.

The present manuscript reviews the reported anti-photoaging, stress resistance, neuroprotection,
and autophagy properties of green tea in a narrative way. The references for the present review
were collected from a PubMed search with green tea, photoaging, stress resistance, neuroprotection,
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and autophagy as keywords, and those publications that fit into the present review were segregated
without considering a year limit.

2. Reactive Oxygen Species, Oxidative Stress, and Antioxidants

In aerobic conditions, the transfer of electrons occurs between atoms, wherein oxygen is the
ultimate electron acceptor which produces ATP [20]. However, the transfer of uncoupled electrons
results in the generation of free radicals such as reactive oxygen species (ROS) and reactive nitrogen
species (RNS) [21]. ROS are produced regularly inside the body, specifically in the mitochondria,
during respiration and other immune-related functions [22,23]. They can act as a mobile signaling
messenger inside the host. The overall cellular health is dependent on the level of ROS inside
the host [24]. The endoplasmic reticulum transmembrane protein (IRE-1) mediates homeostasis by
initializing the unfolded protein response pathway. However, during the accumulation of ROS,
IRE-1 is unable to initialize this mechanism. Rather, the Nrf2 pathway is activated, which could
initiate stress resistance, as observed in model organism Caenorhabditis elegans (Maupas, 1900) and in
cells [25]. However, too much ROS and RNS may result in damage to cellular components such as
nucleic acids [26], proteins [27], carbohydrates, lipids [28], and other molecules, which could lead to
mutations and eventually to cancer and other age-related diseases [20,28–30]. Additionally, ROS may
accumulate inside the body from external sources like smoking, and exposure to harmful pesticides
and some other pollutants [31]. These ROS molecules induce oxidative stress, which can have an
impact on many biological processes including apoptosis and autophagy, as they can harm different
biomolecules and organelles and lead to an inflammatory response in the host. The host cells have
a network of antioxidant enzymes which can neutralize an excess amount of ROS inside the body.
Superoxide dismutase (SOD), catalase (CAT), the glutathione peroxidases (GPxs), and thioredoxin (Trx)
are some of the endogenous antioxidants present in the host to neutralize excess ROS and maintain
equilibrium [32].

Any shift in the equilibrium, which may happen due to a reduction of antioxidants inside
the system or due to an increase in ROS as a result of immune-related processes, will lead to
oxidative stress [33,34]. Prolonged stress and aging may play a major role in reducing the efficiency
of endogenous antioxidants against oxidative stress [23]. ROS promote peroxidation of the lipids
in the cell membranes, along with altering the structure and function of different enzymes and
promoting carbohydrate oxidation [18]. Inside the brain, this could lead to neurological, age-associated
diseases like Parkinson’s disease (PD) and Alzheimer’s disease (AD) [35,36]. In this regard, exogenous
antioxidants may be better at modulating excess levels of ROS inside a host. Identification of natural
sources of antioxidants, mainly of plant origin, may have several advantages over focusing on chemical
compounds. Natural sources can be taken as food additives, which could hinder the chain reactions of
oxidation, thereby inhibiting the oxidation process [20].

The consumption of antioxidant-rich (like polyphenolics and flavonoids) fruits and vegetables [37]
is known to reduce the impact of different age-related diseases, including coronary heart disease
and cancer [38,39]. Polyphenols are chemical compounds with one or more phenolic groups per
molecule [18]. They may inhibit ROS induced damage to DNA, proteins and lipids, and produce
inflammatory cytokines along with activating several signal transduction pathways [40]. Different
types of polyphenols include flavonoids (catechins, isoflavones, and anthocyanins), and non-flavonoids
(phenolic acid, benzoic acid, resveratrol, etc.), and they are richly present in fruits, vegetables, tea,
and other natural sources [18]. Humans consume various compounds with antioxidant properties in
their diet, like vitamin C, tocopherols, carotenoids, and flavonoids. These may have structural and
functional variations, but their combined action helps to reduce the level of ROS [20].

Ascorbic acid (vitamin C) is considered to be one of the most powerful, water-soluble, natural
antioxidants, with very little toxins associated with it and which is present in many dietary foods or
plants [41]. It has been shown to have a positive effect against the superoxide radical anion, H2O2,
the hydroxyl radical, and the singlet oxygen radical. It can also neutralize RNS in aqueous solutions.
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Ascorbic acid is abundantly found in citrus fruits, kiwi, cherries, melons, and tomatoes, as well as leafy
vegetables like broccoli, cauliflower, and cabbage. Tocopherols (vitamin E) are the most widely used
antioxidants, and are mainly present in nuts, seeds, and vegetable oils [20].

Flavonoids are the most common antioxidant components found in plant sources. Flavonoids
are the major antioxidants in the diet, and are known to protect against cardiovascular diseases by
reducing the level of oxidation of low-density lipoproteins. Apigenin, chrysin, luteolin, datiscetin,
quercetin, myricetin, morin, and kaempferol are some of the most commonly found flavonoids [20].
Additionally, phenolic acids are also known to counteract against oxidative damage mediated diseases
like coronary heart disease, stroke, and cancers [42]. Carotenoids, largely found as food micronutrients
in the human diet [43], have significant antioxidant properties in plants [44] and humans. They can
scavenge singlet molecular oxygen and peroxyl radicals [20,44]. These antioxidants from natural
sources are widely accepted as useful, mainly because of their wide range of activities against almost
all kinds of oxidants, along with very limited side effects [20]. Green tea extract, specifically, can also
have significant effects against ROS and RNS [45], which will be discussed in detail in the later sections.

However, proper care should be taken to avoid excess use of antioxidants, as it could be harmful.
Vitamins A, E, and C and β-carotene in high doses have not been shown to extend health benefits, but
rather lead to hypervitaminosis and intoxication [46]. Case studies have been reported in the United
States regarding toxic reactions after consuming vitamin A at a dose of approximately 100,000 IU/day.
Similar results have also been reported for vitamin E (3200 mg/day) and ascorbic acid (4 g/day) [47].

3. Photoaging

Skin is the largest organ of the human body, and creates an effective external barrier against
the detrimental effects of environmental and xenobiotic agents, such as smoking, contaminants
in the air and water, excessive oils and fats, drugs, and heavy metals, which induce extrinsic
aging [48]. It is the first line of defense to protect the internal organs of the body and maintains
homeostasis through diverse mechanisms [49]. Skin aging is a complex process mediated by the
intrinsic process of senescence, and extrinsic damage induced by external factors like chronic exposure
to UV irradiation—a process known as photoaging [50,51]—Which can lead to erythema, edema,
sunburn, hyperplasia, premature aging, and the development of non-melanoma and melanoma skin
cancers [52]. UV can cause skin damage either directly, through absorption of energy by biomolecules,
or indirectly, by increased production of ROS [53].

A cascade of changes happens in the skin when exposed to UV radiation, leading to photoaging.
Skin photoaging largely depends on the presence of melanin in the cells, which acts as the first level
of defense against UV radiation. However, excess production of melanin can lead to damage like
melasma, freckles, and senile lentigo. During exposure to UV radiation, tyrosinase is activated, which
enhances the production of melanin in the cells [54]. Subsequently, UV will degrade the collagen and
elastin fibers in the skin, leading to wrinkle formation [55] along with increasing levels of ROS and
matrix metalloproteases, which will damage the collagen fibers [56] and thereby collectively induce
photoaging. Parallel to this, UV exposure induces immunosuppression in skin cells, thereby blocking
the normal function of protection from infection and removal of damaged cells. Immunosuppression is
mediated by different mechanisms, such as suppression of contact hypersensitivity (CHS), infiltration
of leukocytes, DNA damage, and attenuation of antigen-presenting capacity [51].

The depletion of the ozone layer allows easier penetration of UV radiation into the earth, which
subsequently increases the level of skin cancer among people. Sunscreens are widely used to protect
skin from UV. It can be used to scatter, reflect, or absorb radiation. However, compounds like titanium
dioxide and zinc oxide in commercial sunscreen creams may create an opaque layer over the skin,
which can damage the proper functioning and nourishment of the skin cells [57]. Natural products
with antioxidant activity, which could enhance the endogenous capacity of the skin and help neutralize
ROS [53], should be considered as an effective alternative for these chemical agents.
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4. Camellia Sinensis (Green Tea)

Tea (Camellia sinensis) is one of the most popular antioxidants, and the most widely consumed
drink after water [1]. Green tea, oolong tea, and black tea are the three major forms of tea, and are
categorized based on the level of antioxidants present and the degree of fermentation [1,4]. Tea leaves
are steamed at a high temperature after harvesting to inactivate the polyphenol oxidizing enzymes,
which protects the majority of vitamins present in the tea [4]. Thus, green tea possesses high levels of
antioxidants and is used for its antiaging [58] and neuroprotective effects [58,59], alongside treating or
preventing several diseases such as cancer [60], cardiovascular conditions [61,62], obesity [63], and
so forth.

Green tea mainly consists of polyphenols (~90%), amino acids (~7%), theanine, proanthocyanidins,
and caffeine (~3%). Among the different polyphenols, catechins and flavonols (myricetin, caempherol,
quercetin, chlorogenic acid, coumarylquinic acid, and theogallin) are the major constituents.
Catechin (C), epicatechin (EC), gallocatechin (GC), epigallocatechin (EGC), epicatechin gallate (ECG),
epigallocatechin gallate (EGCG), and gallocatechin gallate (GCG) are the major catechins present in
green tea [4,36]. Among these, EGCG, ECG, and EGC constitute 80% of the total catechins [64]. The
quality of green tea mainly depends on the time of harvesting and leaf age. The amount of theanine,
theobromine, caffeine, catechin, and GCG decreased in later harvests. However, the amount of EC,
EGCG, and EGC increased in the same conditions [64]. Similarly, young leaves (upto the 7th leaf) were
found to have higher amounts of caffeine, EGCG, ECG, and other catechins when compared to older
leaves [65,66]. This is thought to occur due to the withering process [66]. EGCG is the most abundant
catechin, representing 50–80% of the total catechins in green tea. It is also considered to be the major
contributor to the various health benefits of green tea [36,67].

Fresh tea leaves have an average of 30% of catechins by dry weight, which constitutes the flavonol
group of polyphenols. Apart from this, tea also contains chlorogenic acid and coumarylquinic acid,
along with theogallin (3-galloylquinic acid) and theanine (5-N-ethylglutamine), which are unique
to tea. Caffeine is also present in tea, along with trace amounts of other common methylxanthines,
theobromine, and theophylline. Tea can also accumulate aluminum and manganese. During the
manufacture of black tea, initially the leaf structure is disrupted, which allows the aerobic oxidation of
catechins. This is mediated by polyphenol oxidase, which is present in tea leaves along with other
enzymes. A series of compounds like bisflavanols, theaflavins, epitheaflavic acids, and thearubigensare
produced by the condensation process of various quinines. These are known to impart the characteristic
taste and color properties of black tea [1].

The optimum consumption of green tea with antioxidants delivers many health benefits,
such as preventing cancer [60] and cardiovascular ailments [61,62], regulating cholesterol [68],
mediating weight loss [69–71], regulating aging, reducing the inflammatory response, and controlling
neurodegenerative diseases [72]. Green tea polyphenols have also been observed to exhibit potential
effects in inhibiting tooth decay and reducing blood pressure, along with antibacterial, antioxidant, and
antitumor properties [9,73–76]. EGCG has been observed to have a role in cancer chemoprevention [77].
After consumption, catechins of green tea undergo phase II metabolism, and have been shown to be
present in conjugated and unconjugated forms in plasma [78]. Even though it is not widely accepted,
many researchers believe that green tea can exert positive effects on diabetes [79,80]. Green tea reduces
the level of oxidative stress [81] and inhibits glucose uptake via the insulin pathway [82].

5. Protective Effects of Green Tea

5.1. Antiphotoaging Properties of Green Tea

The polyphenols present in green tea have good ROS scavenging activity, which makes it a
potential candidate in antiphotoaging therapy (Figure 1, Tables 1 and 2). In a recent study, tea
polyphenols were fed to mice which had undergone a UV mediated photoaging process. A significant
increase in hydroxyproline content was observed in vitro, and catalase activity increased along with
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decreased protein carbonyl content [83].An aqueous extract of green tea was found to improve the skin
of mice affected by photoaging. It was found to increase the level of collagen and elastin fibers and
reduced the expression of collagen-degrading MMP-3 enzymes, thereby showing potential antiwrinkle
effects [84].

Topical application of epigallocatechin gallate (EGCG) was found to prevent skin tumor incidence
and multiplicity in wild type mice. However, this was not possible in IL-12 knockout mice.
Additionally, EGCG could also reduce the number of cells affected by sunburn in wild type mice alone.
This suggested that EGCG can act against UV induced tumor formation, along with reducing DNA
damage and sunburn via an IL-12 dependent mechanism [85]. Green tea was applied topically or
given as feed to different sets of mice before exposing them to UV radiation. In both the conditions,
there was a significant reduction in the level of tumors when compared to the control [86]. In another
study, mice treated with 2% EGCG showed a significant decrease in the number of sunburn cells in rats
after UV exposure [87].Feeding of green tea seed extract was found to reduce the signs of UV induced
photoaging, such as wrinkle formation, and increase the synthesis of collagen in mice [88].

In a recent study, human volunteers were made to consume green tea polyphenols in the form of
capsules for a limited period, and it was observed that green tea catechins conjugate their metabolites
in plasma, blister fluid, and skin biopsy samples [89]. In another study, 18 individuals aged between
21 years and 71 years were asked to apply green tea extract and a placebo topically, before exposure to
UV radiation. The biopsy analysis and level of erythema suggested that the green tea pretreatment
showed a significant reduction in the number of cells with sunburn [90]. Volunteers aged between 18
years and 50 years applied various concentrations of green tea extract, ranging from 0.25 to 10%, to
their skin. The green tea polyphenols applied before UV exposure decreased sunburn cells by 66%, in
which the lower dose of 0.5% showed positive activity and the 2.5% concentration provided excellent
protection. In the second part of the study, the skin was treated with equal concentrations of 5% green
tea polyphenols and its constituents EGCG, EC, and EGC. However, the whole extract was the most
effective in protecting from erythema, sunburn, and DNA damage, suggesting that the combined
activity of green tea polyphenols show maximum activity above that of individual ones [91].

In another randomized double-blind study, topical application of green tea to the skin was
undertaken before and after UV exposure. After 72 h of exposure, a 57% of reduction of epidermal
Langerhans cells was observed in the vehicle control, whereas green tea treated cells showed a 35%
reduction when compared to unexposed cells. DNA damage was also analyzed, and the vehicle control
showed a significant increase (69%) when compared to the unexposed control. However, volunteers
who undertook topical green tea application did not show any significant changes in damage to DNA
when compared to the unexposed control [92].

Twenty Chinese women were volunteers in analyzing the effect of varying concentrations of green
tea extract (2–5%) in protecting skin from UV induced photoaging through topical application [93].
Along with the levels of erythema, the thickness of stratum corneum and epidermis, as well as the
level of matrix metalloproteases, were measured by using microscopic and immunohistochemical
analysis. On Day 1, a 3% topical application showed less erythema, whereas 5% showed damage along
with the vehicle control and control with no topical application, which also showed post inflammatory
hyperpigmentation. The sample using a 3% topical application showed mild pigmentation, whereas
the other samples (2 and 4%) showed moderate pigmentation. Between 2 and 3% of topical applications
showed a controlled level of thickening of the stratum corneum and epidermis when compared to other
samples. A significant reduction of matrix metalloproteases was observed in applications ranging
from 2 to 4%. Overall, this study suggests that an optimum concentration of green tea extract (3%) can
protect the skin from UV radiation-induced damage [93].

A green tea extract was applied to the crows’ feet (wrinkles formed in the outer corner of the
eyes) of 42 Korean females twice a day for eight consecutive days. It was observed that the green tea
extract displayed free radical scavenging activity and antiwrinkle effects in the host [94,95]. In another
placebo-controlled blind study, 56 randomly chosen women aged 25 to 75 were given oral supplements
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of 250 mg green tea polyphenols for two years, and were observed to have significant improvement in
their facial skin and in controlling erythema [96].
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Figure 1. Antiphotoaging property of green tea phytochemicals. Polyphenols present in green tea
positively alter the physiochemical features of the system, and confer protection from accelerated
photoaging [55,56,83,84,88,93,97–101].

Green Tea as an AntiphotoagingAgent: Expected Mode of Action

Many of the pathways that mediate aging were first discovered in small, short-lived organisms
like worms and flies, then were further extrapolated to humans. Under normal conditions, the genes
involved in aging pathways helps to mediate growth, development, and reproduction. However,
during stress conditions, the transcription factor genes will alter their regulation to activate stress
resistance mechanisms, and thereby extend the lifespan [98].

The Insulin/IGF-1 mediated pathway, also called the IIS pathway, is known as the DAF-16
mediated pathway in C. elegans and is orthologous to the mammalian FOXO regulatory pathway.
Mutations in daf-2, which is orthologous to IGF-1 receptors, can double the lifespan of a model
nematode. Additionally, mutations in age-1, the downstream phosphatidylinositol 3-kinase
(PI(3)K)/AKT/PDK kinase, can also extend the lifespan of the nematode [99,100]. The changes
in lifespan are mediated by daf-16, orthologous to the FOXO transcription factor, which when mutated
will reduce the lifespan. The heat shock transcription factor HSF-1 and SKN-1 [101], a Nrf-like
xenobiotic-response factor, will help to mediate lifespan regulation.

During UV-A-induced photoaging, the DAF-16 mediated pathway was found to be regulated,
wherein qPCR analysis showed the downregulation of daf-16 and the upregulation of daf-2, suggesting
the involvement of the pathway [102]. Further analysis of green tea extract in wild type nematodes
also showed DAF-16 dependent regulation (unpublished data), which suggests that green tea can
extend the lifespan in a model nematode exposed to UV-A (Figure 2). These findings could shed light
on the mode of action elicited by green tea extract inside the host during photoaging.
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Figure 2. In C.elegans, the lifespan extension is mediated by the DAF-16 pathway, also known as the
insulin/IGF-1 pathway. The mutation or downregulation of daf-2 or age-1 extends the lifespan of
the worms, aided by the upregulation and increased nuclear localization of daf-16, which could be
mediated by HSF-1 and SKN-1. The green tea extract also causes an increase of lifespan in C. elegans,
which is dependent on the DAF-16 pathway (unpublished data). *indicates mutation.

5.2. Stress Resistance Properties of Green Tea

ROS is essential for normal cellular metabolism and signaling. However, an alteration in the level
of ROS can lead to oxidative stress, which damages cells and thereby the whole organism. Exposure to
antioxidants during oxidative stress aids in the protection of the host by radical scavenging activity,
or by other indirect antioxidant mechanisms [103]. An abundance of antioxidants allows green tea
to impart stress resistance under these different physiological conditions (Tables 1 and 2). One of
the important functions of green tea polyphenols is their vascular protective effect by anti-oxidative,
anti-hypertensive, anti-inflammatory, anti-proliferative, anti-thrombogenic, and lipid-lowering activity.
They can scavenge free radicals, chelate redox active transition metal ions and inhibit redox active
transcription factors, alter enzymes involved in lipid biosynthesis, and reduce intestinal lipid
absorption. They can prevent vascular inflammation, thereby preventing atherosclerotic lesions,
inhibiting proliferation of vascular smooth muscle cells, and suppressing platelet adhesion [104]. These
properties help green tea to reduce the stress level in the body, and thereby provide protection against
cardiovascular ailments.

Theanine, an ingredient in green tea, has been observed to promote resistance against
paraquat, thereby promoting longevity in C. elegans [105]. Tea also reduced the lipid droplets
and fat accumulation in C. elegans by downregulating the expression of vitellogenin family
genes [106].The optimum levels of EGCG were found to extend the lifespan in C. elegans in the
AMPK/SIR-2.1/DAF-16-mediated pathway [107] during stress. EGCG was observed to activate
AMPK, which in turn activates NAD+ followed by SIR-2.1 [108]. Upon activation, SIR-2.1 can activate
the DAF-16 transcription factor, which eventually activates many antioxidant factors [107]. Chlorogenic
acid is also able to extend the lifespan and delay the age-related decline in body movements of C.
elegans, which is dependent on the IIS pathway [97].
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Dietary supplementation of green tea to fruit flies throughout their life resulted in a longer
lifespan, along with reduced total body iron levels. This suggests an interplay between lifespan
mediation and the iron-binding properties of green tea extract [109]. However, it could reduce the
fertility of male Drosophila [110], which could be dependent on the mitochondrial iron transporter,
mitoferrin [111]. EGCG has been found to extend the lifespan in Drosophila [112]. Additionally,
consumption of tea was observed to reduce the activity of toxic metals like cadmium and lead inside
the body of mammalian models. These metals may reduce the activity of endogenous antioxidants.
However, intake of exogenous green tea could reduce the activity of these metals and protect the host
from metal stress [113].

Green tea polyphenols were found to inhibit chronic UV irradiation-induced protein oxidation
in mouse skin tissue [114]. EGCG, apart from mediating the lifespan, was also observed to maintain
equilibrium in redox reactions during altered insulin regulation [115]. It can also activate the nuclear
erythroid-2 like factor-2 (Nrf2) transcription factor, which can reduce oxidative stress and other
cardiovascular conditions [116]. Recently, EGCG was observed to improve the memory function by
mediating RNS levels [45]. Onishi (2018) observed that the intake of green tea extract in mice with
a high fat diet could reduce muscle atrophy, along with insulin resistance [117]. Green tea powder
was observed to induce the expression of different antioxidant enzymes, such as SOD, GSH, and
peroxidase, in rats under oxidative stress [118]. In hamsters, consumption of green tea inhibited
carcinogen induced-lipid peroxidation and oxidative DNA damage in the pancreas [119].

ROS can also interfere in the reproductive ability of organisms by inducing decreased sperm
motility and compromised vitality in males, whereas in females it can inhibit oocyte maturation. EGCG
was observed to reduce the level of ROS and impart antioxidant activity [120]. Tea extract, when
combined with sperm storage media, dose-dependently increased sperm viability [121]. EGCG in the
culture media of bovines showed improved rates of pregnancy and blastocyst development [122]. Tea
polyphenols can increase the level of glutathione peroxidase and reductase, glutathione S-transferase,
catalase, quinone reductase, and superoxide dismutase in different rodents [123], along with inhibiting
DNA oxidative damage [124], which ultimately acts as the stress response mechanism [72].

Consumption of four cups of green tea per day for four months reduced urinary
8-hydroxydeoxyguanosine levels by 31% in 143 smokers aged between 18 years to 79 years [125]. Sixty
males with high-grade prostate intraepithelial neoplasia, who were expected to get cancer within one
year, were made to consume 600 mg of green tea extract per day in a double-blind clinical trial for one
year. Only one tumor case was identified among the 30 subjects who consumed green tea catechins,
against nine cases out of 30 who had taken the placebo [126].

Green tea catechins, in a dose-dependent manner, were found to protect human osteoblasts from
smoke-induced injury by the reduction of free radical formation [127]. They can also reduce the levels
of lipid peroxides and protein carbonyl content [128]. Green tea extract, when analyzed for its effect on
Caco2 cells, was found to decrease the level of ROS. Additionally, after using a pretreatment of green
tea extract for 20 h before exposure to oxidative stress, cell viability was increased and the production
of free radicals was reduced when compared to controls [129]. Interestingly, consumption of green
tea in chronic smokers was associated with a significant reduction of smoking-induced micronuclei
in the white blood cells [130]. The results suggest that green tea may promote a healthy lifespan in
humans also.

5.3. Neuroprotective Properties of Green Tea

Human brains consume approximately 20% of the oxygen inhaled, but its antioxidant activity is
less than that of other organs [131,132]. This increases the possibility of an increased level of ROS inside
the brain, which can have serious health effects such as mitochondrial dysfunction and apoptosis that
could lead to neurodegenerative diseases like Alzheimer’s and Parkinson’s disease [72].

Tea polyphenols were found to directly scavenge ROS and RNS, inhibit the activity of nitric oxide
synthase, xanthine oxidase, cyclooxygenases, and lipoxygenases, along with nuclear factor-κB and
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activator protein-1, and induce antioxidant enzymes such as glutathione S-transferases and superoxide
dismutases to bind and chelate excess metals such as iron (Fe2+) and copper, in vitro [133]. EGCG
can modulate the accumulation of proteins like Huntingtin, β-amyloid, and α-synuclein, and thereby
enhance the clearance of three AD-relevant phosphorylated tau epitopes in primary neurons (Tables 1
and 2) [134,135]. Green tea [136] and fractions of green tea aroma [137] were found to delay Aβ-induced
paralysis, which led to suppression of Alzheimer’s in transgenic nematode strains.

AD mice models fed with 2–6 mg/kg of EGCG for four weeks showed a significant reduction
in the accumulation of Aβ [138]. The transgenic mouse model, which expresses amyloid precursor
proteins, was orally fed with 50 mg/kg of EGCG from two months old upto six months old, and
showed a significant reduction in the levels of Aβ. Additionally, green tea polyphenols and epicatechin
were able to suppress tau proteins and improve cognitive function, along with reducing accumulation
of Aβ [139].EGCG, when injected intraperitoneally (20 mg/kg) or administered orally (50 mg/kg),
could decrease the levels of Aβ and plaque formation in a transgenic mouse model of “Swedish”mutant
APP [140]. Oral consumption of EGCG (20 mg/kg) in transgenic mice for three months showed 60%
and 52% reduction of Aβ deposits in the frontal cortex and hippocampus, respectively. EGCG can be
considered a therapeutic agent for neuroinflammation-associated AD, as it was able to prevent memory
impairment induced by lipopolysaccharide and apoptotic neuronal cell death in mice. Additionally, it
can prevent the activation of astrocytes and increase cytokine expression [141].

EGCG was found to suppress the neurotoxicity induced by Aβ, as it could activate the glycogen
synthase kinase-3β (GSK-3β), along with inhibiting c-Abl/FE65—the cytoplasmic nonreceptor tyrosine
kinase which is involved in the development of the nervous system and nuclear translocation [142].
In another study, EGCG was observed to suppress the expression of TNFα, IL-1β, IL-6, and
inducible nitric oxide synthase (iNOS), restoring the levels of intracellular antioxidants against free
radical-induced pro-inflammatory effects in microglia, nuclear erythroid-2 related factor 2 (Nrf2), and
heme oxygenase-1 (HO-1) [143]. Additionally, EGCG suppressed Aβ-induced cytotoxicity by reducing
ROS-mediated NF-κB activation and mitogen-activated protein kinase (MAPK) signaling, including
c-Jun N-terminal kinase (JNK) and p38 signaling [144].

Green tea was observed to reduce memory impairments and prevent oxidative stress and damage
in the hippocampus in a rat model for Alzheimer’s disease, with better effect than red and black tea.
This could be attributed to the increased level of EGCG in green tea [145]. Tea polyphenols, when
administered orally, could reduce motor impairments and dopaminergic neuronal injury, and attenuate
dopamine depletion and dopaminergic neurons in monkeys with Parkinson’s disease, along with
improving the motor functions of the brain [146]. Tea polyphenols rescued and restored the impaired
movement activity induced by paraquat in Drosophila models of Parkinson’s disease [147].

A cross-sectional study conducted in China with 2015 subjects aged over 65 years suggested that
consumption of tea reduced the prevalence of Alzheimer’s disease and cognitive impairment [93].
Another study done with 215 subjects suggested that regular consumption of tea could reduce the
level of Parkinson’s disease [148].
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Table 1. Effects of green tea supplementation on photoaging, stress resistance, neuroprotection, and associated health complications: Results of in vivostudies.

S. No Compound(s)/Extract (s) Used Dosage Given Model System Results Ref.

1 Polyphenols of green tea 200 mg/kg Mice Increase in hydroxyproline content and catalase activity.
Decrease in protein carbonyl content. [83]

2 Aqueous extracts of green tea 2% Mice Increase the level of collagen and elastin fibers.
Reduced expression of MMP-3 enzymes. [84]

3 Seed extracts of green tea 10 mg/kg, 100 mg/kg and 200 mg/kg Mice Increase in collagensynthesis.
Reduced wrinkle formation. [88]

4 Green tea extract 0.5% of diet Mice Reduce muscle atrophy and mediate insulin resistance. [117]
5 Green tea polyphenols 0.2% wt./vol Mice Inhibit protein oxidation induced by UV radiations. [114]

6 Epigallocatechin gallate (EGCG) 1.0 mg/cm2 skin area Mice Prevent skin tumor incidence and multiplicity.
Reduce the number of cells affected by sunburn.

[85]
[87]

7 EGCG 2 g/L of drinking water Mice Maintain equilibrium during redox reaction. [115]
8 EGCG 2 mg/kg or 6 mg/kg Mice model for AD Reduction in the accumulation of Aβ. [138]

9 Crude green tea extract 10 mg/mL in food Fruit flies Extension of lifespan.
Reduction in total body iron. [110]

10 EGCG 10 mg/mL in food Drosophila Extend lifespan. [112]
11 EGCG 200 µM C. elegans Extend lifespan. [107]

12 Cholinergic acid 50 µM C. elegans Extend lifespan.
Delay age-related decline in body movements. [97]

13 Theanine 1 µM C. elegans Stress resistance and lifespan extension. [105]
14 Green tea extract 0.025 g/mL and 0.05 g/mL of media C. elegans Reduce fat accumulation and lipid droplets. [106]

15 Green tea and fractions of green tea aroma 0.125 and 0.25 mg/mL of green tea and 10
and 100µg/mL of green tea aroma fraction Transgenic strains of C. elegans Delay ofAβ-induced paralysis. [136,137]



Nutrients 2019, 11, 474 12 of 24

5.4. Autophagy Properties of Green Tea

Autophagy is an internal process that aids in the lysosomal degradation and removal of old
and unwanted cellular molecules, including proteins, ribosomes, lipid droplets, and other organelles,
thereby maintaining cellular homeostasis and survival under metabolic stress [149–152]. In this manner,
autophagy protects the overall health of the host, especially in conditions like diabetic cardiomyopathy
and cancer [153–155]. In mammalian cells, PI3 kinase forms a complex with BECLIN-1 and thereby
activates autophagy [152]. Inhibition of the mammalian target of rapamycin (mTOR) increases
autophagy, which makes rapamycin an autophagy inducer [156]. Additionally, the mitogen-activated
protein kinase (MAPK) pathway can also activate autophagy [156]. Activation of AD could also provide
neuroprotective effects, as impaired autophagy may lead to the accumulation of Aβ in the host [157].
Many bioactive polyphenols, like curcumin [158] and isoflavones [159], can activate autophagy.
Optimum concentrations of EGCG were able to induce autophagy, anti-inflammatory action [160],
degrade lipid droplets in endothelial cells [161,162], and facilitate degradation of endotoxins leading
to anti-inflammatory actions [160]. Growing evidence suggests that the activation of autophagy by
different polyphenols should contribute to their neuroprotective effects [151]. Tea polyphenols were
observed to activate autophagy through various different mechanisms, including the mammalian
target of the rapamycin (mTOR) pathway [163] during endoplasmic reticulum stress in HEK293T
cells, along with AMP-activated protein kinase [164]. EGCG treatment can induce autophagy, as it
diminishes the effect of negative regulators of autophagy such as GADD34, which controls apoptosis.
In other words, EGCG was able to extend autophagy, thereby delaying apoptosis mediated cell death
and eventually extending cell viability [164].

Atrazine is a widely used herbicide which also has neurotoxic effects and can induce cell death in
dopaminergic neurons, which could be overcome by autophagy. Green tea polyphenols, along with
isoflavones, resveratrol, quercetin, and curcumin, were observed to activate autophagy in SH-SY5Y
cells, which was suppressed by atrazine [159]. Green tea was able to activate autophagy in HL-60
xenographs by increasing the activity of PI3 kinase and BECLIN-1 [152]. EGCG can also protect the
primary neuronal cells from prion diseases activating autophagy by inducing sirtuins [165]. It can
also inhibit the growth of breast cancer cells in vitro and in vivo by altering autophagy, as it increases
the formation of autophagosomes and autolysosomes [166]. Similarly, brain cancer cells can also use
EGCG to induce autophagy [167]. In microglial cells, green tea catechins were observed to prevent
hypoxia-induced oxidative stress and cell death by inducing autophagy [168].

Cancer cells use autophagy to protect themselves from harsh conditions and increase their survival
during chemotherapy and ionizing radiation [156]. In a recent study, EGCG was combined with a
low strength pulsed electric field (PEF) and a low energy ultrasound (US) as a novel method for
cancer treatment. After 72 h of treatment, it was observed that this combination could achieve 20%
alteration in the viability of human pancreatic cancer when compared to the control. Additionally,
it could increase the level of intracellular ROS and inhibited Akt phosphorylation. Altogether, this
combinatorial treatment induced autophagy as it switched from cytoprotective to cytotoxic, thereby
causing cancer cell death with apoptosis [169].

Interestingly, higher concentrations of EGCG, for example, 100µM in macrophage cell lines, can
inhibit autophagy leading to apoptosis [170]. On the whole, the autophagy properties of green tea
depend upon the dosage used, level of stress, and the cells involved [150]. Until now there has not
been a clear idea of the mechanism of action initiated by green tea extract to mediate autophagy [156].
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Table 2. Effects of green tea supplementation on photoaging, stress resistance, neuroprotection, and associated health complications: outcomes of clinical trials.

No. Compound(s)/Extract(s) Used Subjects Used Duration Treatment Method Results Ref.

1 Green tea polyphenols 12 human volunteers between
18–65 years 3 months Consume capsules of green

tea polyphenols
Conjugate metabolites in plasma, blister fluid,

and skin biopsy samples [89]

2 Green tea extract 18 human volunteers between 21
and 71 34 days Topical application Reduction in the level of cells with sunburn [90]

3 Green tea extract Human volunteers aged between
18 and 50 -

Topical application ranging
from 0.25 to 10%

Topical applicationof 5%
EGCG, EC, and EGC

Decreased sunburn cells by 66%
0.5 to 2.5% concentration showed

optimum activity
Lesser activity when compared to the

crude extracts

[91]

4 Green tea extract 10 human volunteers
15 min prior to UV irradiation

and immediately
after exposure

Topical application Lesser DNA damage when compared to
vehicle control [92]

5 Green tea extract 20 Chinese women
30 min prior to UV irradiation

and 6, 24, and 48 h
after exposure

Topical application (2–5%)

3% of topical application showed less erythema,
mild pigmentation, controlled level of

thickening of stratum corneum and epidermis,
and reduction of matrix metalloproteases

[93]

6 Green tea extract 42 Korean females 8 weeks Topical application at
crow’s feet Free radical scavenging and antiwrinkle effects [94,95]

7 Green tea polyphenols 56 women aged 25 to 75 2 years Oral supplements of 250 mg
green tea polyphenols

Improvement in facial skin and in
controlling erythema [96]

8 Green tea extract 2015 subjects aged over 65 years 6 months Oral consumption Reduced the prevalence of Alzheimer’s disease
and cognitive impairment [171]

epicatechin (EC); epigallocatechin (EGC).
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Calorie restriction is a major mechanism for stimulating autophagy, which in turn can lead to an
increase in lifespan and also depends on the removal of damaged cellular components accumulated
during cellular aging. Sirtuins and AMP-activated protein kinase are the key players involved in
mediating this mechanism [151]. The orthologs of these genes in C. elegans are sir-2.1 and aak-2.
Previous studies have suggested that black tea [172] and green tea (unpublished data) can increase the
lifespan of nematodes through a sir-2.1-dependent mechanism. In hepatic cells, EGCG was observed to
activate AMPK, thereby activating autophagy [173]. Tea polyphenols were able to activate autophagy
in high fat fed rats, along with inhibiting the level of high blood glucose-induced autophagy [174].

EGCG was also observed to increase the specificity and sensitivity of radiation in targeting cancer
cells through autophagy, and the Nrf2 mechanism in colorectal cancer cells [154]. Doxorubicin, the
chemotherapeutic drug for treating osteosarcoma cancer cells, was observed to have synergistic effects
when combined with EGCG, thereby aiding in improving the clinical efficacy of antitumor drugs and
promoting their further development [175]. Prevention and treatment of hepatocellular carcinoma
in HepG2 cells were initiated by EGCG by regulating α-fetal protein secretion, thereby modulating
autophagy [176].

6. Conclusions

Herbs like green tea can be effectively used in different antiaging products, which could safely
mitigate and reverse photoaging signs and symptoms. The novel concept of treating photoaging and
preventing its progression by using natural products is now on the rise [177]. Mediterranean and
Asian diets comprised of different polyphenols, including green tea, are now being widely accepted
because of their enormous health benefits, including protective effects against cardiovascular and
neurodegenerative diseases [151]. However, there is still no clear data on the optimum dose of natural
compounds to impart health benefits to humans. Different model organisms, such as C. elegans,
Drosophila, and mice, are used for high throughput screening of different polyphenols for their effects
in mediating lifespan and other health benefits, as these models can act as a whole organism, which
enables researchers to understand the different effects exerted by these compounds during the overall
lifespan of the organism [178].

Excessive use of green tea can impart negative results, as these polyphenols inside the system
will make them unstable, leading to autoxidative reactions and resulting in ROS production [179] and
the increase of other DNA damaging factors [72]. The overactivation of Nrf-2 (by EGCG) was found to
induce cardiovascular conditions and cancer [116]. Higher concentrations of EGCG (up to 100 µM)
inhibited autophagy, leading to apoptosis in macrophagecelllines [170] and cancer cells [180]. Another
study has proven the sensitivity of cancer cells towards the prooxidant activity of green tea [181].
These reports suggest that only optimum doses of green tea alone may be beneficial, and if taken in
excess, it could have a negative effect on humans.

Additionally, ROS is required in certain amounts inside all living systems. An excess level of
ROS will lead to damage to different cellular components, like nucleic acids and proteins, which can
lead to many age-related diseases. In humans, exercise activates AMP kinase, which stimulates blood
glucose uptake. Antioxidants prevent this stimulation of glucose uptake, suggesting the possible role
of ROS [98]. Similarly, in the case of C. elegans, low levels of juglone—Which is known to generate
ROS—Extends the lifespan [182].

Some case reports have also indicated that excessive intake of tea extracts induces liver
toxicity [183], which is probably due to the prooxidant property of tea polyphenols [184]. It is proposed
that low and moderate doses of tea polyphenols produce lower levels of ROS, which activates Nrf2
to attenuate oxidative stress, whilst high dose of tea polyphenols produce high levels of ROS and
induce toxicity [185]. In this regard, optimum doses of green tea must be consumed, which can provide
numerous health benefits to mankind.

However, we strongly believe that findings from these experimental models cannot be directly
extrapolated into humans, because of the complex network of interlinked physiological processes
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that natural compounds can act upon. Humans share many evolutionarily conserved mechanisms
with different species which could have been inherited during evolution. However, due to our
complex physiological, social and cultural development, which cannot be observed in many of the
model organisms [186], the models are not a perfect match. Additionally, the absorption of the
flavonoids under study will be lower in the circulatory systems of these models, as they will be
metabolized differently by the microbiota inside the intestine, which is unique [187]. For example,
resveratrol—which is well known to extend the lifespan in many models like C. elegans—Cannot
reproduce the same effect in higher models like mice. The difference in the dose, gender, genetic
background, diet composition, and so forth could have a potential role in regulating changes in these
effects [188]. Similarly, in the case of green tea extract, there are studies in different model organisms
about its potential to extend lifespan and healthspan, which we have discussed in this review. Future
research should focus on humans, to identify if the same effects can be reproduced. Clinical trials
should be undertaken to identify the optimum dose of green tea in humans to achieve the maximum
health benefits. This could be the next potential leap in the field of healthspan research.
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30. Nieradko-Iwanicka, B.; Borzęcki, A. Subacute poisoning of mice with deltamethrin produces memory
impairment, reduced locomotor activity, liver damage and changes in blood morphology in the mechanism
of oxidative stress. Pharmacol. Rep. 2015, 67, 535–541. [CrossRef] [PubMed]

31. Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 2nd ed.; Clarendon Press: Oxford, UK,
1989.

32. He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants Maintain Cellular Redox Homeostasis by
Elimination of Reactive Oxygen Species. Cell. Physiol. Biochem. 2017, 44, 532–553. [CrossRef] [PubMed]

33. Sies, H. Oxidative stress: Oxidants and antioxidants. Exp. Physiol. 1997, 82, 291–295. [CrossRef] [PubMed]
34. Somogyi, A.; Rosta, K.; Pusztai, P.; Tulassay, Z.; Nagy, G. Antioxidant measurements. Physiol. Meas. 2007, 28,

R41–R55. [CrossRef] [PubMed]
35. Riederer, P.; Sofic, E.; Rausch, W.D.; Schmidt, B.; Reynolds, G.P.; Jellinger, K.; Youdim, M.B. Transition metals,

ferritin, glutathione, and ascorbic acid in parkinsonian brains. J. Neurochem. 1989, 52, 515–520. [CrossRef]
[PubMed]

36. Li, F.; Wang, Y.; Li, D.; Chen, Y.; Qiao, X.; Fardous, R.; Lewandowski, A.; Liu, J.; Chan, T.H.; Dou, Q.P.
Perspectives on the recent developments with green tea polyphenols in drug discovery. Expert Opin. Drug
Discov. 2018, 24, 1–18.

37. Bocco, A.; Cuvelier, M.E.; Richard, H.; Berset, C. Antioxidant activity and phenolic composition of citrus
peel and seed extracts. J. Agric. Food. Chem. 1998, 46, 2123–2129. [CrossRef]

http://dx.doi.org/10.11138/ccmbm/2014.11.3.177
http://www.ncbi.nlm.nih.gov/pubmed/25568649
http://dx.doi.org/10.1155/2013/930164
http://www.ncbi.nlm.nih.gov/pubmed/24159392
http://dx.doi.org/10.1111/jocd.12083
http://www.ncbi.nlm.nih.gov/pubmed/24910279
http://dx.doi.org/10.1111/j.1751-1097.1996.tb03065.x
http://www.ncbi.nlm.nih.gov/pubmed/8934759
http://dx.doi.org/10.3390/antiox4020248
http://www.ncbi.nlm.nih.gov/pubmed/26783703
http://dx.doi.org/10.1056/NEJMra070553
http://www.ncbi.nlm.nih.gov/pubmed/17634462
http://dx.doi.org/10.1007/s00204-011-0774-2
http://www.ncbi.nlm.nih.gov/pubmed/22102161
http://dx.doi.org/10.1016/j.biopha.2016.06.021
http://www.ncbi.nlm.nih.gov/pubmed/27470554
http://dx.doi.org/10.1016/j.lfs.2005.05.103
http://www.ncbi.nlm.nih.gov/pubmed/16253281
http://dx.doi.org/10.3748/wjg.v23.i16.2841
http://www.ncbi.nlm.nih.gov/pubmed/28522903
http://dx.doi.org/10.1016/j.freeradbiomed.2015.02.019
http://www.ncbi.nlm.nih.gov/pubmed/25744411
http://dx.doi.org/10.1039/C7FO00054E
http://www.ncbi.nlm.nih.gov/pubmed/28271112
http://dx.doi.org/10.1002/bies.20027
http://www.ncbi.nlm.nih.gov/pubmed/15112233
http://dx.doi.org/10.1016/j.dnarep.2016.05.025
http://www.ncbi.nlm.nih.gov/pubmed/27264559
http://www.ncbi.nlm.nih.gov/pubmed/25392110
http://dx.doi.org/10.1016/0278-6915(94)90011-6
http://dx.doi.org/10.1016/j.pharep.2014.12.012
http://www.ncbi.nlm.nih.gov/pubmed/25933966
http://dx.doi.org/10.1159/000485089
http://www.ncbi.nlm.nih.gov/pubmed/29145191
http://dx.doi.org/10.1113/expphysiol.1997.sp004024
http://www.ncbi.nlm.nih.gov/pubmed/9129943
http://dx.doi.org/10.1088/0967-3334/28/4/R01
http://www.ncbi.nlm.nih.gov/pubmed/17395989
http://dx.doi.org/10.1111/j.1471-4159.1989.tb09150.x
http://www.ncbi.nlm.nih.gov/pubmed/2911028
http://dx.doi.org/10.1021/jf9709562


Nutrients 2019, 11, 474 17 of 24

38. Eberhardt, M.V.; Lee, C.Y.; Liu, R.H. Antioxidant activity of fresh apples. Nature 2000, 405, 903–904.
[CrossRef] [PubMed]

39. Ganesan, K.; Kumar, K.S.; Rao, P.V.S. Comparative assessment of antioxidant activity in three edible species
of green seaweed, Enteromorpha from Okha, Northwest coast of India. Innov. Food Sci. Emerg. 2011, 12,
73–78. [CrossRef]

40. Nichols, J.A.; Katiyar, S.K. Skin photoprotection by natural polyphenols: Anti-inflammatory, antioxidant
and DNA repair mechanisms. Arch. Dermatol. Res. 2010, 302, 71–83. [CrossRef] [PubMed]

41. Weber, P.; Bendich, A.; Schalch, W. Vitamin C and human health-a review of recent data relevant to human
requirements. Int. J. Vit. Nut. Res. 1996, 66, 19–30.
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