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Abstract: Fruit and vegetable intake has been associated with a reduced risk of cardiovascular
disease. Quercetin and kaempferol are among the most ubiquitous polyphenols in fruit and
vegetables. Most of the quercetin and kaempferol in plants is attached to sugar moieties rather than
in the free form. The types and attachments of sugars impact bioavailability, and thus bioactivity.
This article aims to review the current literature on the bioavailability of quercetin and kaempferol
from food sources and evaluate the potential cardiovascular effects in humans. Foods with the
highest concentrations of quercetin and kaempferol in plants are not necessarily the most bioavailable
sources. Glucoside conjugates which are found in onions appear to have the highest bioavailability in
humans. The absorbed quercetin and kaempferol are rapidly metabolized in the liver and circulate
as methyl, glucuronide, and sulfate metabolites. These metabolites can be measured in the blood
and urine to assess bioactivity in human trials. The optimal effective dose of quercetin reported
to have beneficial effect of lowering blood pressure and inflammation is 500 mg of the aglycone
form. Few clinical studies have examined the potential cardiovascular effects of high intakes of
quercetin- and kaempferol-rich plants. However, it is possible that a lower dosage from plant sources
could be effective due to of its higher bioavailability compared to the aglycone form. Studies are
needed to evaluate the potential cardiovascular benefits of plants rich in quercetin and kaempferol
glycoside conjugates.
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1. Introduction

Cardiovascular disease (CVD) remains the leading cause of death worldwide [1]. Fruit and
vegetable intake has been associated with reduced risk of CVD and mortality in epidemiological
studies [2]. Flavonoids, secondary metabolites in plants, are suggested to be among the bioactive
compounds in fruit and vegetables that contribute to the cardiovascular benefits [3]. Flavonols,
particularly quercetin and kaempferol, are among the most widely distributed flavonoids in foods [4,5].
Quercetin and kaempferol have been shown to have antioxidant and anti-inflammatory effects in
in vitro studies [6] and cardioprotective and antihypertensive benefits in animal studies [7,8]. Flavonols
in plants, however, are synthesized linked to sugar conjugates, and thus have different bioavailability
than the free forms [9]. Little is known about the potential cardiovascular effects in humans when
foods rich in flavonols are consumed.

For flavonols to exert bioactivity in humans, ingested flavonols need to be bioavailable and
reach body tissues. Bioavailability from a nutritional perspective is defined as the extent of digestion,
absorption, metabolism, and excretion of a compound after the ingestion of food [10]. Establishing the
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bioavailability of bioactive compounds is an essential step in determining the potential mechanisms of
action of flavonols [10]. Human studies evaluating the bioavailability of quercetin and kaempferol
suggest that some conjugated forms in plants have higher bioavailability than the free forms [11–13].
In the human body, flavonols are rapidly metabolized which has limited the detection of the free
forms in blood and urine and the evaluation of bioactivity of flavonol-rich foods [14]. However,
recent advancements in mass spectrometry enable the detection of low-abundance metabolites [15].
The bioactivity of circulating metabolites in humans is not well understood. A better understanding of
the bioavailability of flavonol conjugates from different food sources is needed to inform clinical studies.
This article aims to review the current literature on the bioavailability of quercetin and kaempferol
from food sources and to evaluate the potential cardiovascular effects in humans.

2. Food Sources and Dietary Intakes

Quercetin and kaempferol are widely distributed in fruit and vegetables [16]. Table 1 shows the
average amounts in select major food sources. High concentrations of quercetin are found in a few
foods such as onion, asparagus, and berries, and small quantities are found in many different fruit and
vegetables. The richest plant sources of kaempferol (mg/100 g fresh weight) are green leafy vegetables,
including spinach and kale, and herbs such as dill, chives, and tarragon. The leaves of wild leeks or
ramps (100g fresh weight) were reported to contain 50.2 and 32.5 mg of quercetin and kaempferol,
respectively [17].

Table 1. Select Plant Sources of Quercetin and Kaempferol.

Source Quercetin Kaempferol

Food mg/100 g fresh weight

Apples 4.01 0.14
Asparagus 14.0 1.40

Broccoli 13.7 7.20
Chili pepper 32.6 -

Chinese cabbage - 22.5
Kale 22.6 47.0

Leeks 0.9 2.67
Lettuce 14.7 0.84
Onions 45.0 4.50
Spinach 27.2 55.0
Chives 10.4 12.5

Dill 79.0 40.0
Fennel leaves 46.8 6.50

Oregano 42.0 -
Blueberry 14.6 3.17

Cherry 17.4 5.14
Cranberry 25.0 0.21

Wild leeks (whole) [17] 8.36 5.31

Beverage mg/100 ml

Black tea 2.50 1.70
Red wine 3.16 0.25

Sources: Phenol-Explorer and USDA (United States Department of Agriculture) Database for the Flavonoid Content
of Selected Foods.
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The estimated dietary intakes of flavonols vary across populations. Differences are related,
in part, to variations between databases. Currently, there is not a complete standard database on
flavonoid content in foods. Dietary recommendations of flavonol intake for individuals have not
been established [18,19]. Despite being widely available in foods, flavonol intake in the US has been
reported to range between 9.0–36.2 mg/day [20] which is lower than the 51 and 52 mg/day intake
reported in the United Kingdom and European countries respectively [21,22]. In the US, the foods that
contributed most to flavonol intake are tea, onion, apple, and red wine [23,24]. Average intakes of
individual quercetin and kaempferol among US adults are 3.5 and 5.4 mg/day, respectively [23].

3. Chemical Structure

Flavonoids consist of two phenyl rings (ring A and B) connected to a heterocyclic ring (ring C) [25].
Quercetin and kaempferol share the same 3-hydroxy flavone backbone but differ by the presence of an
additional hydroxyl group at the R1 position on quercetin [26] (Figure 1). The number of hydroxyl
groups influences the chemical reactivity [26] of the compounds. Thus, kaempferol is more chemically
stable and less reactive than quercetin as it has one less hydroxyl group. Flavonols in their free
forms, aglycones, have lipophilic (fat-soluble) properties. However, most flavonols are synthesized in
plants are attached to a sugar moiety, the glycoside form, which are lipophobic (water-soluble) [27].
The hydroxyl functional groups on all three rings are potential sites for linkage to sugar moieties (i.e.,
O-glycosides) [25]. The sugar moieties most commonly attached to flavonols are monosaccharides
glucose, rhamnose, galactose, arabinose, and xylose [28] and the disaccharide rutinoside which is
composed of glucose and rhamnose connected by a β-glycosidic bond [27].
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Figure 1. General structure of quercetin and kaempferol. Two phenyl rings (A and C) and a heterocyclic
ring B. If R1 = OH, Quercetin; if R1 = H, Kaempferol.

Table 2 shows the major quercetin and kaempferol glycosides reported in plant sources.
Dietary quercetin is present mainly as O-glycosidic forms including quercetin-3-O-rutinoside (rutin),
quercetin-3-O-glucoside (isoquercetin), and quercetin-3,4′-O-diglucoside [29]. The specific quercetin
moieties in apples, a main source of intake in the US, are mainly -rutinoside, -galactoside, -rhamnoside,
and -glucoside [30]. The position of conjugate attachment may block the active -OH sites that contribute
to the potency or bioactivity of the compounds [25]. Also, variations of sugar moieties synthesized in
plants result in different rates of digestion, absorption, and metabolism [31]. Thus, high amounts of
quercetin and kaempferol in foods does not always lead to increased bioactivity.
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Table 2. Major quercetin and kaempferol glycosides in select plant sources.

Food Source Sugar Moieties Ref.

Quercetin

Red wine -3-glucoside, –rutinoside [32]
Onions -4′-glucoside, -3,4′-diglucoside [33]

Tea -3-rutinoside [34]
Apple -rutinoside, -galactoside, -rhamnoside, –glucoside [30]

Wild leek (ramps) -sophoroside glucuronide, -hexoside glucuronide, -sophoroside [17]

Kaempferol

Wild garlic and leeks -glucopyranoside, -neohesperidose [35–38]
Black tea -rutinoside, glucoside [27]
Broccoli -sophoroside (β-1,2-glucose) [39]
Endive -3- glucuronide, 3-glucoside [13]

Wild leek (ramps) -sophoroside glucuronide, -rutinoside glucuronide, -sophoroside [17]

4. Bioavailability

Figure 2 illustrates the bioavailability of dietary flavonols after the ingestion of aglycone and
glycoside forms. One of the important factors of bioavailability is the fat solubility of the ingested
flavonols [10]. When flavonol-rich foods are ingested, the aglycones and glycoside forms undergo
different routes of digestion and absorption [40]. Lipophilic aglycons passively diffuse unmetabolized
from the intestinal lumen into the enterocytes where they are either directly absorbed into the
hepatic portal vein or metabolized before absorption [40,41]. Metabolism of the aglycones in the
enterocytes involves phase I (oxidation and O-demethylation) and phase II metabolism (sulfation,
glucuronidation, and methylation) to produce metabolites which are absorbed via ATP-binding cassette
(ABC) transporters into the hepatic portal vein [41,42].

Lipophobic glycosides, however, must be hydrolyzed to the aglycone form in the intestinal
lumen or enterocyte before they can be absorbed into the blood [43]. On the intestinal brush
border, lactase-phlorizin hydrolase enzyme (LPH) hydrolyzes glycosides to aglycones [44] which
are passively absorbed into enterocytes. Alternatively, the glycosides can be transported by
sodium-dependent glucose transporter (SGLT 1) into the enterocyte where they are hydrolyzed
by cytosolic β-glucosidase [43,45]. The resulting aglycones then either passively diffuse into the hepatic
portal vein or undergo phase I and II metabolism to produce metabolites which are absorbed via ABC
transporters [41,42] into the hepatic portal vein. The absorbed aglycones bound to serum albumin and
the metabolites are transported to the liver [46]. In the liver, the remaining aglycones undergo phase I
and II metabolism resulting in methyl, sulfur, and glucuronide metabolites which are transported along
with intestinal metabolites into the systemic circulation for distribution to body tissues [47,48]. Flavonol
metabolism in body tissues is not well understood. An in vitro study suggested that β-glucuronidase
enzyme found in body tissues hydrolyzes the conjugated metabolites producing aglycones [49].
Flavonol metabolites are excreted by urinary and biliary elimination. Flavonols are transported from
blood circulation to the kidney via organic-anion-transporting polypeptides (OATs) [50,51]. The OATs
transporters are specific for the transport of metabolites synthesized endogenously in the liver (sulfate,
glucuronide, and methyl metabolites) [51]. Metabolites in bile are either eliminated in feces or recycled
back to the small intestine [52]. Some ingested glycosides are poorly absorbed in the small intestine
and reach the colon where the colonic microbiome metabolism occurs [48]. The major metabolites
produced are 3,4-dihydroxyphenylacetic acid, 3,4-dihydroxybenzoic acid, and 3-hydroxyphenylacetic
acid [53]. These metabolites are either excreted in feces or absorbed into blood circulation [20,54].
The fate and bioactivity of phenolic acid metabolites are not well understood.
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4.1. Quercetin Bioavailability

4.1.1. Digestion and Absorption

Table 3 shows quercetin absorption reported from different food sources. deVaries et al. [55]
compared the absorption of quercetin from onions and tea. Healthy participants followed a standard
low-quercetin diet (vegetables and fruit <15 mg quercetin/kg and beverages <4 mg/L) during the
study period. They consumed 1600 mL/day of black tea (49 mg quercetin glycosides) and 129 g/day
of fried onions (13 mg quercetin glycosides) each for three days separated by a four-day washout
period. The washout period was sufficient to decrease urinary quercetin levels to baseline. Urinary
excretion was higher after the intake of fried onions than black tea (1.1% versus 0.5%) suggesting that
the form of quercetin from onions is better absorbed than the form in tea. The deVaries group [56]
then compared the quercetin absorption from six 125 mL glasses of red wine (14.2 mg quercetin), 50 g
of fried yellow onions (15.9 mg quercetin), and three 125 mL cups of black tea (13.7 mg quercetin).
Each was consumed daily for four days separated by 3-day washout periods. The washout period
was sufficient to decrease plasma levels to baseline. Plasma concentration of quercetin was higher
after onion intake than red wine or tea, and 24-h urinary excretion was highest after onion intake
followed by red wine and tea. Although tea and red wine are rich sources of quercetin, the form
of sugar moieties had a significant effect on absorption. Notably, the only difference between some
glucosides in onions and red wine is the position of the glucose attachment (Table 2).

Olthof et al. [57] tested whether the position of glucose moiety affected absorption. Participants
consumed capsules containing 151 mg quercetin-3-glucoside and 154 mg quercetin-4′-glucoside.
The difference in 24-h urinary excretion was 3.0% and 2.6% (p > 0.05), respectively, with no difference
in plasma peak concentrations between treatments. Thus, the glucose attachment on positions 3′ and
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4′ had no impact on the rate of absorption. This can be explained by the suggested mechanism of
transport in the small intestine. Quercetin glucoside is transported by the sodium-dependent glucose
transporter (SGLT 1) into enterocytes independent of its attachment to quercetin [41].

Table 3. Extent and rate of digestion and absorption different of quercetin forms from dietary sources.

Food Source (amount, g or ml) Quercetin
Dosage n

Urinary
Excretion or

Concentration
(%)

Maximal
Plasma

Concentration
(µmol/L)

Time to Reach
Maximal

Concentration
(hours)

Ref.

Black tea (1600) 49 mg
15

0.5 [55]
Onions (129) 13 mg 1.1

Onions (NR) 225 µmol
9

1.39 0.74 0.70
[58]Applesauce + peel (NR) 325 µmol 0.44 0.30 2.5

Rutin 331 µmol 0.35 0.30 9

Onions (333) 89 mg
9

52
[11]Rutin 220 mg 17

Dehydrate 112 24

Red wine (750) 14.2
12

0.371 µmol/L 0.026
[56]Onions (50) 15.9 0.509 µmol/L 0.053

Black tea (375) 13.7 0.252 µmol/L 0.026

Quercetin-3-glucoside capsule 151
9

3.0 5.0 0.62 [57]
Quercetin-4′-glucoside capsule 154 2.6 4.5 0.45

Dehydrate 544
6

1.69 µmol/L [59]
Onion soup (100) 47 1.17 µmol/L

Dehydrate with fat-free (<0.5)
1095 9

- 1.1 5.7
[60]Dehydrate low-fat (4.0) - 1.24 5.4

Dehydrate high-fat (15.4) - 1.6 6.7

Onions (160) 100

12

6.4 2.31 0.68

[61]Dehydrate 100 4.5 2.12 0.70
Buckwheat tea (NR) 200 1.0 0.64 4.32

Dehydrate 200 0.90 0.32 6.98

Abbreviations: NR, not reported; min, minutes; n, number of participants.

Hollman et al. [58] compared absorption from fried onions (225 µmol quercetin), applesauce
with peels (325 µmol), and a quercetin-3-O-β-rutinoside or rutin (331 µmol) capsule in nine healthy
participants. The excretion of free quercetin in the urine was 1.39% for onions, 0.44% for applesauce
and 0.35% for rutin. Plasma peak levels were reached at 0.7 h after eating onions, 2.5 h after applesauce,
and 9 h after rutin. Absorption was highest with onions compared to applesauce and rutin supplements.
Although quercetin content in apples is concentrated in the peels, the high amounts of insoluble fiber in
apples’ skin may interfere with intestinal absorption [62,63]. Quercetin rutinoside, the major glycoside
in tea and apples, is a disaccharide connected by a β-glycosidic bond. Humans lack the enzyme
needed to hydrolyze this bond. Consequently, microorganisms in the colon mediate hydrolysis of the
rutinoside resulting in minimal intestinal absorption and production of phenolic acid metabolites in
the colon.

Hollman et al. [11] compared the absorption of quercetin from onions, rutin, and aglycones with
the exclusion of microbiome metabolism to quantify quercetin absorption from the small intestines
only. To eliminate colonic absorption, the study was conducted on healthy ileostomy participants
(n = 9) who consumed 89 mg of quercetin from fried yellow onions, 220 mg β-rutinoside in capsules
and 112 mg aglycone from quercetin dehydrate capsules for four days. Urine and ileostomy effluent
were used to calculate percent absorption. The average absorption was 52% for fried onions, 24%
for pure aglycone, and 17% for rutinoside. This suggested that quercetin glucoside from onions has
the highest extent of intestinal absorption relative to quercetin rutinoside and aglycone. This can be
explained by the different routes of absorption across the intestinal wall. Quercetin glucosides are
absorbed by SGLT 1 which is an active transporter that requires energy for its action and thus has a
higher absorption rate than the passive transport of the aglycones across the intestinal wall.
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Lipid solubility is a major determinant factor in absorption. The hydrolysis of a sugar moiety
before absorption into the bloodstream increases lipid solubility of the ingested quercetin. Therefore,
it is important to examine the role of dietary fat on the rate and extent of absorption. Guo et al. [60]
conducted a crossover study in which participants consumed 1095 mg quercetin aglycone supplement
in muffins that were fat-free (<0.5 g fat), low-fat (4.0g) or high-fat (15.4 g). Maximum concentration
of total plasma quercetin increased by 12% after the low-fat trial and increased by 45% after high-fat
trial (p < 0.05). Enhanced quercetin absorption after the high-fat trial can be explained by increased
incorporation into the micelle, soluble fat droplet, indicating that the co-ingestion of quercetin with
dietary fat increases absorption from the small intestine.

4.1.2. Metabolism and Excretion

After absorption, quercetin is transported to the liver where it undergoes phase I and II metabolism
producing metabolites which circulate in the blood for distribution to body tissues [46]. To understand
quercetin bioavailability, it is essential to identify the major metabolites in the blood and urine. Table 4
lists quercetin metabolites detected in the blood and urine after the ingestion of flavonol-rich food.
Mullen et al. [64] analyzed and quantified major quercetin metabolites in plasma and urine after
ingestion of onions. Healthy participants followed a low-quercetin diet for two days and fasted
overnight before the consumption of 270 g fried onions. Venous blood samples were collected before
onion intake and 0.5, 1, 2, 3, 6, and 24 h post-ingestion. The three major plasma metabolites were
quercetin-3-sulfate, -3′-sulfate, and -3-glucuronide. The main 24-h urinary metabolites were quercetin
-diglucuronide, -3′-glucuronide, isorhamnetin-glucuronide, –glucuronide sulfate, and -methyl quercetin
diglucuronide. In total, 23 metabolites were identified with five being quantified in plasma and 12 in
the urine.

Quercetin metabolites appeared in plasma after 30 min of ingestion, but a significant amount
was excreted over a 24-h period. This indicates rapid clearance and a short half-life of quercetin in
the blood. To understand the accumulation of quercetin in plasma after multiple administrations of
quercetin-rich foods, Moon et al. [65] determined quercetin conjugate accumulation in human plasma
after the periodic ingestion of onions. Participants (n = 7) consumed 93.6 mg quercetin/day from
onion slices over three meals for one week. Glucuronide and sulfate metabolites in fasting plasma
increased from 0.04 µM to 0.63 µM (p < 0.05). This was the first human study to report that short-term
ingestion of quercetin glucosides in onions elevates plasma metabolites and accumulates even after
fasting. The highest concentration of quercetin metabolites was detected after the ingestion of onions.
Major plasma metabolites are quercetin-3′-sulfate and -3-glucuronide with maximum levels reached
after 0.8 and 0.6 h, respectively. In addition, major urine metabolites are quercetin -diglucuronide,
-3′-glucuronide, isorhamnetin-3-glucuronide, and -glucuronide sulfate, and these reached maximum
levels after 4 h [64]. This indicates that the kidney plays a role in quercetin metabolism. Kidney
metabolism includes the addition of glucuronide and sulfate conjugates on different sites on quercetin
structure. Notably, small amounts of glucoside metabolites were detected in urine but not in the blood.

In summary, quercetin glucosides from onions appear to have the highest rate of absorption
compared to the glycosides from apples, red wine, and tea or aglycones. In addition, dietary fat
has been shown to enhance quercetin aglycone absorption from the small intestine. The major
plasma metabolites are quercetin-3′-sulfate and -3-glucuronide with maximum levels reached after
0.8 and 0.6 h, respectively. Major urine metabolites are quercetin -diglucuronide, -3′-glucuronide,
isorhamnetin-3-glucuronide, and -glucuronide sulfate reached maximum levels after 4 h. Quercetin
in plasma was only detected as metabolites, and thus further studies are needed to investigate the
bioactivity of quercetin metabolites.
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4.2. Kaempferol Bioavailability

4.2.1. Digestion and Absorption

Studies evaluating the bioavailability of food-derived kaempferol conjugates are limited. In a
crossover study, De Varies et al. [55] examined the digestion and absorption of kaempferol from black
tea in participants (n = 15) who consumed 27 mg of kaempferol from black tea for three days. Urinary
excretion of kaempferol was 2.5% of the amount ingested suggesting that kaempferol absorption was
higher than quercetin (0.5% urinary excretion). This indicated that although quercetin content is higher
than kaempferol in black tea, the type of glycoside in tea had higher bioavailability.

The digestion and absorption of kaempferol were assessed after the intake of 12.5 mg kaempferol
from broccoli for 12 days. The rate of kaempferol urinary excretion was 0.9% [66]. In rats, it was
suggested that kaempferol could be converted to quercetin by phase I oxidation enzymes [67];
however, no quercetin was detected after the ingestion of broccoli indicating that quercetin cannot be
endogenously synthesized from dietary kaempferol in humans. This was confirmed in another study
which examined the rate of digestion and absorption of kaempferol after intake of 9 mg kaempferol
from cooked endive [13]. The 24-h urinary excretion of kaempferol was 1.9% and the plasma peak
concentration reached 0.1 µM after 5.8 h. No quercetin was detected in plasma or urine. Endive
contains the glucuronide form which is one of the metabolites released after phase I and II metabolism.
This metabolite can be absorbed by the ABCs transporters and thus has higher absorption; but, the rate
and efficiency of this transport mechanism are not well defined.

4.2.2. Metabolism and Excretion

Generally, flavonols are extensively metabolized in the liver and circulate in the blood as sulfate,
methyl, and glucuronide conjugates [64]. Identifying the major metabolites in blood and urine after the
ingestion of kaempferol-rich foods is needed to better understand the metabolites’ potential biological
activity. Only one human study identified kaempferol metabolites after the ingestion of kaempferol-rich
food. DuPont et al. [13] assessed kaempferol metabolites after the ingestion of 150 g of cooked endive
(9 mg kaempferol). The major metabolite identified in plasma and urine was kaempferol-3-glucuronide.
In addition, kaempferol mono- and di-sulfates were detected in urine. Although studies on quercetin
metabolism did not detect aglycone due to rapid metabolism, in this study, free kaempferol was detected
in plasma and urine (40% and 16% of total kaempferol, respectively). This result can be explained
by the activity of the β-glucuronidase enzyme which hydrolyzes glucuronide metabolites in body
tissues [68]. It was suggested that the activity of this enzyme is higher for kaempferol-3-glucuronide
compared to quercetin glucuronide which may explain the absence of quercetin aglycone in plasma
and urine [68]. The concentration of free kaempferol was lower in urine than blood suggesting that
some of the aglycones were metabolized in the kidney before excretion.

In summary, an evaluation of the literature on kaempferol digestion and absorption indicated that
kaempferol rutinoside and glucoside in tea have the highest absorption, followed by glucuronide and
glucoside in endive and sophoroside in broccoli. Kaempferol metabolites were identified in the plasma
as aglycone and glucuronide and as sulfate in the urine; however, before conducting intervention
studies on the health benefits of kaempferol, further human studies are needed to assess the absorption
of kaempferol from foods.
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Table 4. Major quercetin metabolites in blood and urine after the ingestion of quercetin-rich foods.

Food Source (g or ml) Flavonol Glycoside (mg) Dosage (mg) Metabolites Detected Concentration (µmol/L) Max Time (hours) Half-life (hours) Ref.

Blood

Fried onions (200)

Quercetin-3,4′-O-diglucoside 37.1 Isorhamnetine 0.11 1.5 -

[69]
Quercetin-3-O-glucoside 0.7 -glucuronide 0.26 1.5 -

Quercetin-4′-O-glucoside 39.5
-Sulfate 0.16 1.5 -Isorhamnetin-4′-O-glucoside 1.8

Quercetin 0.1

Fried onions (270)

Quercetin-3,4′-O-diglucoside 67 -3′-sulfate 0.67 0.75 1.71

[64]
Quercetin-4′-O-glucoside 66 -3-glucoronide 0.35 0.60 2.33

Isprhamnetin-4′-O-glucoside * 5.3
Isorhamnetin-3-glucuronide* 0.11 0.60 5.34

-glucuronide sulfate 0.12 2.5 4.54
-diglucuronide 0.062 0.80 1.76

Tomato juice (300) Quercetin-3-O-rutinoside 7.3 -3-glucuronide 0.0038 5 5.7 [70]

Urine

Fried onions (270)

Quercetin-3,4′-O-diglucoside 67
-diglucuronide 2.22 4-8 -

[64]

quercetin-3′-glucuronide 1.85 0-4 -

Quercetin-4′-O-glucoside 66

isorhamnetin-3-glucuronide* 1.79 4-8 -
-glucuronide sulfate 1.38 0-4 -

Methylquercetin diglucuronide 1.00 4-8 -
-3-glucuronide 0.912 0-4 -

Isorhamnetin-4′-O-glucoside * 5.3

-glucoside sulfate 0.82 0-4 -
Isorhamnetin-4′-glucuronide* 0.70 0-4 -

-glucoronide glucoside 0.16 0-4 -
-4′-O-glucuronide 0.24 24 -

Tomato juice (300) Quercetin-3-O-rutinoside 7.3 -3-glucuronide 0.18 24 - [70]

* Isorhamnetin indicates quercetin is connected to methyl.
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5. Potential Bioactivity in Humans

5.1. Quercetin Bioactivity

Clinical trials on the bioactivity of quercetin-rich foods or diets on blood pressure and
cardiovascular risk are limited (Table 5). Conquer et al. [71] reported on the first clinical trial to
study the effect of quercetin (1 g quercetin aglycone with 200 mg rutin in a capsule versus a placebo) on
plasma quercetin concentrations and CV risk factors. Quercetin treatment significantly increased the
plasma concentration from 0.1 µmol/L to 1.5 µmol/L after 28 days, but no significant changes in CV or
thrombogenic risk factors (i.e., platelet aggregation, platelet thromboxane production, blood pressure or
resting heart rate) between groups were detected. Participants were healthy, normotensive individuals
which may explain the lack of treatment effect. Edwards et al. [72] found that 730 mg quercetin aglycone
was effective in reducing blood pressure in patients diagnosed with stage 1 hypertension, but not in
pre-hypertensive individuals. Another study found that a lower dose of 150 mg quercetin aglycone was
effective in reducing blood pressure in patients with hypertension after 42 days [73]. Participants were
instructed to continue antihypertensive medications (n = 15). No significant changes were reported in
oxidative stress markers or inflammatory markers including tumor necrosis factor-alpha (TNF-α) and
CRP. Conversely, intake of 500 mg of quercetin significantly decreased inflammatory markers, TNF-α
and interleukin (IL-6), in women with type 2 diabetes, a risk factor for CVD [74].

Quercetin supplements supply the aglycone form which is not the most bioavailable. Based on
the bioavailability studies reviewed, quercetin glucoside was the most bioavailable form. It is plausible
that it may be effective at lower doses than the aglycone form. Brüll et al. [75] conducted a double-blind
placebo-controlled crossover trial to investigate the effects of onion extract on blood pressure in adults
with pre- and stage 1 hypertension who were in proinflammatory state (hs-CRP ≥2 mg/L). Participants
taking antihypertensive medications (n = 12) continued medications. Quercetin capsules of 132 mg
onion skin extract (162 mg quercetin) and a placebo were administered daily for six weeks separated
by a six weeks washout period. In the whole group, quercetin did not significantly decrease 24-h
ambulatory blood pressure parameters. However, in the subgroup with stage 1 hypertension, quercetin
significantly decreased 24-h systolic blood pressure by 3.6 mmHg, day-time systolic blood pressure by
4.6 mmHg, and night-time systolic blood pressure by 6.6 mmHg. Fasting serum intercellular adhesion
molecule decreased by 8.2 ng/mL, but no significant difference was detected in other indicators of
vascular damage and inflammation.

The significant reduction in blood pressure among the stage 1 hypertensive subgroup agreed with
previous studies which indicated a threshold for quercetin effectiveness. Also, a meta-analysis review
evaluated the effectiveness of quercetin supplement in lowering blood pressure in 7 trials. Results
showed that a dosage of ≥500 mg quercetin aglycone supplement significantly reduced systolic and
diastolic blood pressure by 4.45 mmHg (p < 0.007) and −2.98 mmHg (p < 0.001), respectively [76].
The evaluation of the impact of quercetin on oxidative stress and vascular function markers suggested
that quercetin effects on blood pressure may be independent of endothelial function and angiotensin
converting enzyme (ACE) mechanism which agreed with Larson et al. [77] findings that reported 1095
mg of quercetin supplements decreased blood pressure independently to ACE and other vascular
damage markers.

Information contained in Table 4 indicated that quercetin supplements as low as 150 mg of aglycone
were effective in lowering blood pressure in individuals with stage 1 hypertension independent of ACE
activity, oxidative stress, and vascular damage markers. A dose of 500 mg was effective in lowering
inflammatory markers, TNF-α and IL-6. Further studies are needed to investigate the bioactivity of
quercetin metabolites after the ingestion of glucosides from quercetin-rich foods on inflammatory
markers in patients with elevated markers and at high risk of CVD.
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Table 5. Studies on the effectiveness of quercetin on hypertension, inflammation, and cardiovascular risk.

n Health Condition Age (years) BMI (kg/m2) Quercetin (mg) Duration (days) Blood Pressure Results Other Results Ref.

27 Healthy 42.0 ± 2.6 26.0 ± 1.3 1000 aglycone + 200
rutin 28 No effect No effect other CVD factors [71]

41
Pre-HTN 47.8 ± 3.5 29.7 ± 1.3 730 aglycone 28

No effect nor oxidative stress [72]

Stage 1-HTN 49.2 ± 2.9 29.7 ± 1.3

SBP (−7 ± 2mmHg),
DBP(−5 ± 2mmHg)

mean arterial pressures
(−5 ± 2 mmHg)

no effect on oxidative stress

93 Baseline mean BP (130±16.4/
81.6±9.3mmHg) 25–65 25–35 150 aglycone 42

SBP: entire group
(−2.6 mmHg),

subgroup with HTN
(−2.9 mmHg)

Subgroup aged 25-50
(−3.7 mmHg)

Decreased oxidized LDL. No effect on
TNF-α and CRP [73]

62 Type 2 diabetes 35-55 NR 500 aglycone 70 SBP (−8.8 ± 9.3 mmHg),
DBP (no effect)

Decreased TNF-α and IL-6 relative to
baseline, but not different than placebo [74]

68

Pre-HTN
(≥120–139 mmHg and/or

≥80–89 mmHg)
25–65 25–35 396 onion powder

(162 quercetin
glucoside)

42
ABP (no effect) sICAM-1 (−8.2 ng/mL)

[75]
Stage I HTN

(≥140–159 mmHg and/or
≥90–99)

25–65 25–35 Systolic ABP (−3.6 mmHg), sICAM-1 (−8.2 ng/mL)
No effect on NO, ACE, sVCAM

5 Normotensive 24 ± 3 24 ± 4
1095 aglycone 1

No effect No effect on ACE, ET-1, NO, and
brachial artery flow mediated dilation [78]

12 Stage 1 HTN 41 ± 12 29 ± 5 SBP (−5 mmHg)

Abbreviations: NR, not reported; HTN; hypertension; BMI, body mass index; CVD, cardiovascular disease; BP, blood pressure; SBP, systolic blood pressure; DBP, diastolic blood pressure;
ABP, ambulatory blood pressure; LDL, low-density lipoprotein; TNF-α, tumor necrosis factor-alpha; CRP, c-reactive protein; IL-6, Interleukin 6; sICAM-1, soluble intercellular adhesion
molecule-1; sVCAM, circulating vascular cell adhesion molecule-1; ACE, angiotensin-converting enzyme; NO, nitric oxide; ET-1, Endothelin-.
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5.2. Kaempferol Bioactivity

The potential cardioprotective effects of kaempferol in in vitro and animal studies have been
attributed to its anti-inflammatory activities [6,79,80]. Epidemiological studies have investigated
associations between intakes of dietary flavonoids, specifically kaempferol, and cardiovascular health
(Table 6), but clinical trials on the cardioprotective benefits of kaempferol are limited. The bioactivity
in humans depends on the type of ingested conjugates and their bioavailability. There is a general
lack of data on dietary kaempferol bioavailability and absorption in humans. No clinical trials were
identified on the cardiovascular bioactivity in humans.

The first study to evaluate the correlation between the intake of flavonoid-rich foods and mortality
from coronary heart disease (CHD) was a longitudinal study in a prospective cohort of 805 men [81].
Participants’ average flavonoid intake was 25.9 mg/day. The consumption of flavonoids rich food
was inversely associated with mortality from CHD (95% CI; 0.20–0.88, p = 0.015). This agrees with
the findings of a meta-analysis review of the association between flavonol intake and risk of CHD
mortality [82]. The review concluded that a 20% reduction in CHD mortality rate was observed among
individuals in the highest tertile of flavonol intake. The mean daily flavonol intake ranged between 2
and >34 mg, mainly from tea, onions, apples, and broccoli. However, the association of individual
flavonols was not analyzed.

Table 6. Epidemiological studies on the association between flavonoids intake and cardiovascular risk.

n Age (years) Health Status Dietary Intake
(mg/day) Results Ref.

805 65–84 Healthy Flavonoids
(12.0–41.6)

(-): CHD mortality
(0.42, 95% CI 0.20–0.88, p = 0.015) [81]

4807 64–69 Healthy Flavonols (14.8–38.5) (-): fatal MI
(0.57, 95% CI 0.33–0.98) [84]

66,360 30–55 29.8% HTN
flavonols+flavone

(21.2)
Kaempferol (4.7)

(-): CHD mortality
(0.66, 95% CI 0.48–0.93; p = 0.04)

No association with MI
[83]

10,054 Mean 39.3 9.6% HTN flavonoids (24.2),
kaempferol (0.1–0.9)

(-): cerebrovascular disease (0.70,
95% CI 0.56–0.86, p = 0.003),

thrombosis (0.63, 95% CI
0.47–0.85, p = 0.004)

[87]

872 52–67 Colorectal
adenoma

Flavonols (9.4–20.8),
kaempferol
(2.54–8.04)

(-): IL-6 levels
(95% CI: 0.24–0.93; p = 0.03) [86]

744 65–99 Healthy Kaempferol (1.0–1.5) (-): acute MI
(0.48, 95% CI; 0.30–0.77, p = 0.002). [85]

Abbreviations: BMI; body mass index, (-); inverse association with flavonol or kaempferol intake, CHD; coronary
heart disease, MI; myocardial infarction, USA; united states of America, HTN; hypertension, DM; diabetes mellitus,
IHD; ischemic heart disease, NR; not reported.

An assessment of the association between the intake of individual flavonols and myocardial
infarction (MI) and fatal CHD in the Nurses’ Health study indicated that kaempferol intake, mainly
from broccoli and tea, was inversely associated with CHD with a relative risk of 0.66 (95% CI: 0.48–0.93,
p = 0.04), but no significant association was observed for MI [83]. However, two studies reported
a significant negative association between acute and fatal MI with higher flavonol and kaempferol
intake [84,85]. To assess whether kaempferol is associated with reduced inflammation in humans,
Bobe et al. [86] investigated the association between kaempferol and IL-6 levels, an inflammatory
marker, in participants with elevated inflammation. Results showed that kaempferol was significantly
associated with lower IL-6 level among participants with the higher dietary intake (>21.4 mg/day).

The reviewed studies indicate that a daily intake of kaempferol ≥1.5 mg/day was associated with
lower CHD mortality and MI incidence. This potential cardioprotective benefit is inconclusive due to
several limitations. The intake of kaempferol was mainly from vegetables, fruit, and tea which may
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contain other bioactive compounds that contribute to cardioprotective effects. The estimated intake
of kaempferol is inaccurate due to the absence of a complete database and variations of kaempferol
content in foods between studies. Intervention studies on the effects of kaempferol derived from plant
sources are still needed to confirm its cardioprotective benefits in humans.

6. Safety

6.1. Quercetin Safety

Clinical studies were reviewed to evaluate the potential adverse effects of quercetin in Table 7.
Oral quercetin was mainly administered as a purified aglycone supplement in human studies.
The supplemented dosage ranged between 150–5000 mg/day for a maximum duration of 12 weeks.
Quercetin metabolism mainly occurs in the liver, and metabolites are excreted by the kidneys.
Only two human studies were identified that assessed quercetin safety on liver or kidney biomarkers.
Egert et al. [73] examined the safety of 150 mg/day quercetin aglycone intake for six weeks in
overweight and obese participants at a high risk of CVD. Liver and kidney biomarkers measured
were alanine transaminase, aspartate transaminase, g-glutamyl-transpeptidase, alkaline phosphatase,
cholesteryl esterase, and creatinine. Additionally, hematology (i.e., leucocyte, erythrocyte, platelet
count, and hemoglobin concentration) and electrolytes were measured. No significant change
in liver, kidney, hematology, or electrolytes biomarkers was detected at the end of the treatment
period indicating a daily dose of 150 mg was safe. In a phase I dose-escalating study evaluating
the safety of quercetin in patients with untreated chronic hepatitis C, doses administered ranged
250–5000 mg/day (n = 2–3 per dose group) for 28 days. Results showed that all participants tolerated
quercetin without changes in liver enzymes (i.e., alanine and aspartate transaminases), and blood count,
complete metabolic, and cholesterol panels remained unchanged. A few patients experienced mild
gastrointestinal discomfort, but the actual number and doses were not reported. However, the safety
results from the study are inconclusive because of the sample size was very small in each dose group,
and the participants had liver disease which may have altered quercetin metabolism. Although few
clinical studies investigated the effectiveness of quercetin supplements report on safety measures.
It was found that amounts as high as 5000 mg/day supplemented for 4 weeks did not cause adverse
events. In 2010, quercetin supplements were added to the Food and Drug Administration’s Generally
Recognized as Safe (GRAS) list for use as a supplemental ingredient added in foods and beverages up
to 500 mg per serving [88].

Table 7. Summary of studies on the safety of quercetin supplement.

n Health Status Dosage (mg) Duration (weeks) Adverse Event Ref.

93
Normotensive

and Stage I
hypertension

150 6
No effects on liver, kidneys,
electrolytes, and hematology

biomarkers
[73]

49 Healthy 150 8 Increased TNF-α by 0.11
pg/mL, p < 0.05 [89]

40 Athletes 1000 6 No adverse events reported [90]

30 Chronic
Hepatitis C 250–5000 4

No adverse effects on liver
function but mild

gastrointestinal discomfort
[91]

Abbreviations: HTN, hypertension; TNF-α, tumor necrosis factor.

6.2. Kaempferol Safety

No human trials were identified that reported the potential toxicity or adverse events of oral
kaempferol intake. Although in vitro studies reported kaempferol antioxidative effects, high levels of
kaempferol supplement may cause self-oxidation (pro-oxidation) [92,93]. However, animal studies
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found that after oral intake, no pro-oxidation effect was observed [94]. A few in vitro studies found
that kaempferol decreases iron absorption and cellular uptake of folic acid due to its high reactivity
with these nutrients [95,96]. However, average kaempferol amount reported in US diet was 5.4 mg/day
and consumption of kaempferol-rich foods providing 8.04 mg/day was associated with beneficial
effects with no reported adverse events [23,86].

7. Conclusions

Based on the current evidence, the most bioavailable form of quercetin is the glucoside conjugate
which is mainly found in onions. A few human studies investigated kaempferol bioavailability
and reported that kaempferol glucoside and rutinoside in tea were the most bioavailable forms.
Once absorbed, quercetin and kaempferol are rapidly metabolized in the liver to form glucuronide,
methyl, and sulfate metabolites which can be detected in the blood and urine. Therefore, the bioactivity
and metabolism of quercetin and kaempferol metabolites in body tissues need to be investigated to
better understand the mechanism of action on cardiovascular health. The optimal effective dose of
quercetin reported to have beneficial effect of lowering blood pressure and inflammation is 500 mg of
aglycone which was found to be a safe dose. Little is known about kaempferol potential cardioprotective
benefits. Studies are needed to evaluate the potential cardiovascular benefits of plants rich in quercetin
and kaempferol glycoside conjugates.

Funding: This research was supported in part by the Food Safety, Nutrition, and Health: Function and Efficacy of
Nutrients grant no. 2019-67018-29286 /project accession no. 1018664 from the USDA National Institute of Food
and Agriculture.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Centers for Disease Control and Prevention. Heart Disease Facts. Available online: https://www.cdc.gov/

heartdisease/facts.htm (accessed on 24 September 2019).
2. Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.;

Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and
all-cause mortality—A systematic review and dose-response meta-analysis of prospective studies. Int. J.
Epidemiol. 2017, 46, 1029–1056. [CrossRef] [PubMed]

3. McCullough, M.L.; Peterson, J.J.; Patel, R.; Jacques, P.F.; Shah, R.; Dwyer, J.T. Flavonoid intake and
cardiovascular disease mortality in a prospective cohort of US adults1234. Am. J. Clin. Nutr. 2012, 95,
454–464. [CrossRef] [PubMed]

4. Erdman, J.W.; Balentine, D.; Arab, L.; Beecher, G.; Dwyer, J.T.; Folts, J.; Harnly, J.; Hollman, P.; Keen, C.L.;
Mazza, G.; et al. Flavonoids and Heart Health: Proceedings of the ILSI North America Flavonoids Workshop,
31 May–1 June 2005, Washington, DC. J. Nutr. 2007, 137, 718S–737S. [CrossRef] [PubMed]

5. Adebamowo, C.A.; Cho, E.; Sampson, L.; Katan, M.B.; Spiegelman, D.; Willett, W.C.; Holmes, M.D. Dietary
flavonols and flavonol-rich foods intake and the risk of breast cancer. Int. J. Cancer 2005, 114, 628–633.
[CrossRef] [PubMed]

6. Crespo, I.; García-Mediavilla, M.V.; Gutiérrez, B.; Sánchez-Campos, S.; Tuñón, M.J.; González-Gallego, J.
A comparison of the effects of kaempferol and quercetin on cytokine-induced pro-inflammatory status of
cultured human endothelial cells. Br. J. Nutr. 2008, 100, 968–976. [CrossRef] [PubMed]

7. Espley, R.V.; Butts, C.A.; Laing, W.A.; Martell, S.; Smith, H.; McGhie, T.K.; Zhang, J.; Paturi, G.; Hedderley, D.;
Bovy, A.; et al. Dietary flavonoids from modified apple reduce inflammation markers and modulate gut
microbiota in mice. J. Nutr. 2014, 144, 146–154. [CrossRef] [PubMed]

8. Badary, O.A.; Yassin, N.A.Z.; El-Shenawy, S.M.A.; EL-Moneem, M.A.; AL-Shafeiy, H.M. Study of the effect of
Allium porrum on hypertension induced in rats. Available online: https://pdfs.semanticscholar.org/c5a4/

82740ec2a0bbc33acf5a64996475be279203.pdf (accessed on 20 November 2018).
9. Xiao, J. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit. Rev.

Food Sci. Nutr. 2017, 57, 1874–1905. [CrossRef]

https://www.cdc.gov/heartdisease/facts.htm
https://www.cdc.gov/heartdisease/facts.htm
http://dx.doi.org/10.1093/ije/dyw319
http://www.ncbi.nlm.nih.gov/pubmed/28338764
http://dx.doi.org/10.3945/ajcn.111.016634
http://www.ncbi.nlm.nih.gov/pubmed/22218162
http://dx.doi.org/10.1093/jn/137.3.718S
http://www.ncbi.nlm.nih.gov/pubmed/17311968
http://dx.doi.org/10.1002/ijc.20741
http://www.ncbi.nlm.nih.gov/pubmed/15609322
http://dx.doi.org/10.1017/S0007114508966083
http://www.ncbi.nlm.nih.gov/pubmed/18394220
http://dx.doi.org/10.3945/jn.113.182659
http://www.ncbi.nlm.nih.gov/pubmed/24353343
https://pdfs.semanticscholar.org/c5a4/82740ec2a0bbc33acf5a64996475be279203.pdf
https://pdfs.semanticscholar.org/c5a4/82740ec2a0bbc33acf5a64996475be279203.pdf
http://dx.doi.org/10.1080/10408398.2015.1032400


Nutrients 2019, 11, 2288 15 of 19

10. Rein, M.J.; Renouf, M.; Cruz-Hernandez, C.; Actis-Goretta, L.; Thakkar, S.K.; da Silva Pinto, M. Bioavailability
of bioactive food compounds: A challenging journey to bioefficacy. Br. J. Clin. Pharm. 2013, 75, 588–602.
[CrossRef]

11. Hollman, P.C.; Vries, D.H.J.; Leeuwen, V.D.S.; Mengelers, M.J.; Katan, M.B. Absorption of dietary quercetin
glycosides and quercetin in healthy ileostomy volunteers. Am. J. Clin. Nutr. 1995, 62, 1276–1282. [CrossRef]

12. Hollman, P.C.H.; Gaag, M.V.D.; Mengelers, M.J.B.; Van Trijp, J.M.P.; De Vries, J.H.M.; Katan, M.B. Absorption
and disposition kinetics of the dietary antioxidant quercetin in man. Free Radic. Biol. Med. 1996, 21, 703–707.
[CrossRef]

13. DuPont, M.S.; Day, A.J.; Bennett, R.N.; Mellon, F.A.; Kroon, P.A. Absorption of kaempferol from endive, a
source of kaempferol-3-glucuronide, in humans. Eur. J. Clin. Nutr. 2004, 58, 947–954. [CrossRef] [PubMed]

14. Cassidy, A.; Minihane, A.-M. The role of metabolism (and the microbiome) in defining the clinical efficacy of
dietary flavonoids. Am. J. Clin. Nutr. 2017, 105, 10–22. [CrossRef] [PubMed]

15. Cuyckens, F.; Claeys, M. Mass spectrometry in the structural analysis of flavonoids. J. Mass Spectrom. 2004,
39, 1–15. [CrossRef] [PubMed]

16. Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci 2016, 5, e47. [CrossRef]
[PubMed]

17. Dabeek, W.M.; Kovinich, N.; Walsh, C.; Ventura Marra, M. Characterization and Quantification of Major
Flavonol Glycosides in Ramps (Allium tricoccum). Molecules 2019, 24, 3281. [CrossRef] [PubMed]

18. Institute of Medicine. Standing Committee on the Scientific Evaluation of Dietary Reference Intakes Dietary
Reference Intakes: Proposed Definition and Plan for Review of Dietary Antioxidants and Related Compounds; National
Academies Press: Washington, DC, USA, 1998; ISBN 978-0-309-06187-2.

19. Chun, O.K.; Chung, S.J.; Song, W.O. Estimated Dietary Flavonoid Intake and Major Food Sources of U.S.
Adults. J. Nutr. 2007, 137, 1244–1252. [CrossRef]

20. Cassidy, A.; O’Reilly, É.J.; Kay, C.; Sampson, L.; Franz, M.; Forman, J.; Curhan, G.; Rimm, E.B. Habitual
intake of flavonoid subclasses and incident hypertension in adults123. Am. J. Clin. Nutr. 2011, 93, 338–347.
[CrossRef] [PubMed]

21. Kesse-Guyot, E.; Fezeu, L.; Andreeva, V.A.; Touvier, M.; Scalbert, A.; Hercberg, S.; Galan, P. Total and Specific
Polyphenol Intakes in Midlife Are Associated with Cognitive Function Measured 13 Years Later. J. Nutr.
2012, 142, 76–83. [CrossRef]

22. Zamora-Ros, R.; Knaze, V.; Luján-Barroso, L.; Slimani, N.; Romieu, I.; Fedirko, V.; de Magistris, M.S.;
Ericson, U.; Amiano, P.; Trichopoulou, A.; et al. Estimated dietary intakes of flavonols, flavanones and
flavones in the European Prospective Investigation into Cancer and Nutrition (EPIC) 24 hour dietary recall
cohort. Br. J. Nutr. 2011, 106, 1915–1925. [CrossRef]

23. Bai, W.; Wang, C.; Ren, C. Intakes of total and individual flavonoids by US adults. Int. J. Food Sci. Nutr. 2014,
65, 9–20. [CrossRef]

24. Scalbert, A.; Williamson, G. Dietary intake and bioavailability of polyphenols. J. Nutr. 2000, 130, 2073S–2085S.
[CrossRef] [PubMed]

25. Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013,
1–16. Available online: https://www.hindawi.com/journals/tswj/2013/162750/ (accessed on 25 March 2019).
[CrossRef] [PubMed]

26. Sharma, A.; Sharma, P.; Tuli, H.S.; Sharma, A.K. Phytochemical and Pharmacological Properties of Flavonols.
In eLS.; American Cancer Society; Wiley: Hoboken, NJ, USA, 2018; pp. 1–12. ISBN 978-0-470-01590-2.

27. Jiang, H.; Engelhardt, U.H.; Thräne, C.; Maiwald, B.; Stark, J. Determination of flavonol glycosides in green
tea, oolong tea and black tea by UHPLC compared to HPLC. Food Chem. 2015, 183, 30–35. [CrossRef]
[PubMed]

28. Xiao, J.; Muzashvili, T.S.; Georgiev, M.I. Advances in the biotechnological glycosylation of valuable flavonoids.
Biotechnol. Adv. 2014, 32, 1145–1156. [CrossRef] [PubMed]

29. Murota, K.; Terao, J. Antioxidative flavonoid quercetin: Implication of its intestinal absorption and metabolism.
Arch. Biochem. Biophys. 2003, 417, 12–17. [CrossRef]

30. Lee, J.; Mitchell, A.E. Pharmacokinetics of quercetin absorption from apples and onions in healthy humans.
J. Agric. Food Chem. 2012, 60, 3874–3881. [CrossRef] [PubMed]

31. Thilakarathna, S.H.; Rupasinghe, H.P.V. Flavonoid Bioavailability and Attempts for Bioavailability
Enhancement. Nutrients 2013, 5, 3367–3387. [CrossRef]

http://dx.doi.org/10.1111/j.1365-2125.2012.04425.x
http://dx.doi.org/10.1093/ajcn/62.6.1276
http://dx.doi.org/10.1016/0891-5849(96)00129-3
http://dx.doi.org/10.1038/sj.ejcn.1601916
http://www.ncbi.nlm.nih.gov/pubmed/15164116
http://dx.doi.org/10.3945/ajcn.116.136051
http://www.ncbi.nlm.nih.gov/pubmed/27881391
http://dx.doi.org/10.1002/jms.585
http://www.ncbi.nlm.nih.gov/pubmed/14760608
http://dx.doi.org/10.1017/jns.2016.41
http://www.ncbi.nlm.nih.gov/pubmed/28620474
http://dx.doi.org/10.3390/molecules24183281
http://www.ncbi.nlm.nih.gov/pubmed/31505821
http://dx.doi.org/10.1093/jn/137.5.1244
http://dx.doi.org/10.3945/ajcn.110.006783
http://www.ncbi.nlm.nih.gov/pubmed/21106916
http://dx.doi.org/10.3945/jn.111.144428
http://dx.doi.org/10.1017/S000711451100239X
http://dx.doi.org/10.3109/09637486.2013.832170
http://dx.doi.org/10.1093/jn/130.8.2073S
http://www.ncbi.nlm.nih.gov/pubmed/10917926
https://www.hindawi.com/journals/tswj/2013/162750/
http://dx.doi.org/10.1155/2013/162750
http://www.ncbi.nlm.nih.gov/pubmed/24470791
http://dx.doi.org/10.1016/j.foodchem.2015.03.024
http://www.ncbi.nlm.nih.gov/pubmed/25863606
http://dx.doi.org/10.1016/j.biotechadv.2014.04.006
http://www.ncbi.nlm.nih.gov/pubmed/24780153
http://dx.doi.org/10.1016/S0003-9861(03)00284-4
http://dx.doi.org/10.1021/jf3001857
http://www.ncbi.nlm.nih.gov/pubmed/22439822
http://dx.doi.org/10.3390/nu5093367


Nutrients 2019, 11, 2288 16 of 19

32. Makris, D.P.; Kallithraka, S.; Kefalas, P. Flavonols in grapes, grape products and wines: Burden, profile and
influential parameters. J. Food Compos. Anal. 2006, 19, 396–404. [CrossRef]

33. Lu, X.; Ross, C.F.; Powers, J.R.; Rasco, B.A. Determination of Quercetins in Onion (Allium cepa) Using
Infrared Spectroscopy. J. Agric. Food Chem. 2011, 59, 6376–6382. [CrossRef] [PubMed]

34. Dragoni, S.; Gee, J.; Bennett, R.; Valoti, M.; Sgaragli, G. Red wine alcohol promotes quercetin absorption and
directs its metabolism towards isorhamnetin and tamarixetin in rat intestine in vitro. Br. J. Pharm. 2006, 147,
765–771. [CrossRef]

35. Carotenuto, A.; De Feo, V.; Fattorusso, E.; Lanzotti, V.; Magno, S.; Cicala, C. The flavonoids of Allium
ursinum. Phytochemistry 1996, 41, 531–536. [CrossRef]

36. Barile, E.; Capasso, R.; Izzo, A.A.; Lanzotti, V.; Sajjadi, S.E.; Zolfaghari, B. Structure-activity relationships for
saponins from Allium hirtifolium and Allium elburzense and their antispasmodic activity. Planta Med. 2005,
71, 1010–1018. [CrossRef] [PubMed]

37. Fattorusso, E.; Lanzotti, V.; Taglialatela-Scafati, O.; Cicala, C. The flavonoids of leek, Allium porrum.
Phytochemistry 2001, 57, 565–569. [CrossRef]

38. Carotenuto, A.; Fattorusso, E.; Lanzotti, V.; Magno, S.; De Feo, V.; Cicala, C. The flavonoids of Allium
neapolitanum. Phytochemistry 1997, 44, 949–957. [CrossRef]

39. Vallejo, F.; Tomás-Barberán, F.A.; Ferreres, F. Characterisation of flavonols in broccoli (Brassica oleracea L.
var. italica) by liquid chromatography–UV diode-array detection–electrospray ionisation mass spectrometry.
J. Chromatogr. A 2004, 1054, 181–193. [CrossRef] [PubMed]

40. Aherne, S.A.; O’Brien, N.M. Dietary flavonols: Chemistry, food content, and metabolism. Nutrition 2002, 18,
75–81. [CrossRef]

41. Williamson, G.; Kay, C.D.; Crozier, A. The Bioavailability, Transport, and Bioactivity of Dietary Flavonoids:
A Review from a Historical Perspective. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1054–1112. [CrossRef]

42. Alvarez, A.I.; Real, R.; Pérez, M.; Mendoza, G.; Prieto, J.G.; Merino, G. Modulation of the activity of ABC
transporters (P-glycoprotein, MRP2, BCRP) by flavonoids and drug response. J. Pharm. Sci. 2010, 99, 598–617.
[CrossRef]

43. Day, A.J.; DuPont, M.S.; Ridley, S.; Rhodes, M.; Rhodes, M.J.C.; Morgan, M.R.A.; Williamson, G.
Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver β-glucosidase
activity. FEBS Lett. 1998, 436, 71–75. [CrossRef]

44. Németh, K.; Plumb, G.W.; Berrin, J.-G.; Juge, N.; Jacob, R.; Naim, H.Y.; Williamson, G.; Swallow, D.M.;
Kroon, P.A. Deglycosylation by small intestinal epithelial cell beta-glucosidases is a critical step in the
absorption and metabolism of dietary flavonoid glycosides in humans. Eur. J. Nutr. 2003, 42, 29–42.
[CrossRef]

45. Walgren, R.A.; Lin, J.T.; Kinne, R.K.; Walle, T. Cellular uptake of dietary flavonoid quercetin 4′-beta-glucoside
by sodium-dependent glucose transporter SGLT1. J. Pharm. Exp. 2000, 294, 837–843.

46. Manach, C.; Regerat, F.; Texier, O.; Agullo, G.; Demigne, C.; Remesy, C. Bioavailability, metabolism and
physiological impact of 4-oxo-flavonoids. Nutr. Res. 1996, 16, 517–544. [CrossRef]

47. O’Leary, K.A.; Day, A.J.; Needs, P.W.; Mellon, F.A.; O’Brien, N.M.; Williamson, G. Metabolism of quercetin-7-
and quercetin-3-glucuronides by an in vitro hepatic model: The role of human beta-glucuronidase,
sulfotransferase, catechol-O-methyltransferase and multi-resistant protein 2 (MRP2) in flavonoid metabolism.
Biochem. Pharm. 2003, 65, 479–491. [CrossRef]

48. Marín, L.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Bioavailability of Dietary Polyphenols and Gut Microbiota
Metabolism: Antimicrobial Properties. Biomed. Res. Int. 2015, 1–18. Available online: https://www.hindawi.
com/journals/bmri/2015/905215/ (accessed on 31 January 2019).

49. Lu, Q.-Y.; Zhang, L.; Eibl, G.; Go, V.L.W. Overestimation of flavonoid aglycones as a result of the ex vivo
deconjugation of glucuronides by the tissue β-glucuronidase. J. Pharm. Biomed. Anal. 2014, 88, 364–369.
[CrossRef] [PubMed]

50. Wang, X.; Wolkoff, A.W.; Morris, M.E. Flavonoids as a novel class of human organic anion-transporting
polypeptide OATP1B1 (OATP-C) modulators. Drug Metab. Dispos. 2005, 33, 1666–1672. [CrossRef] [PubMed]

51. Wong, C.C.; Botting, N.P.; Orfila, C.; Al-Maharik, N.; Williamson, G. Flavonoid conjugates interact with
organic anion transporters (OATs) and attenuate cytotoxicity of adefovir mediated by organic anion
transporter 1 (OAT1/SLC22A6). Biochem. Pharm. 2011, 81, 942–949. [CrossRef]

http://dx.doi.org/10.1016/j.jfca.2005.10.003
http://dx.doi.org/10.1021/jf200953z
http://www.ncbi.nlm.nih.gov/pubmed/21612277
http://dx.doi.org/10.1038/sj.bjp.0706662
http://dx.doi.org/10.1016/0031-9422(95)00574-9
http://dx.doi.org/10.1055/s-2005-873134
http://www.ncbi.nlm.nih.gov/pubmed/16320201
http://dx.doi.org/10.1016/S0031-9422(01)00039-5
http://dx.doi.org/10.1016/S0031-9422(96)00663-2
http://dx.doi.org/10.1016/j.chroma.2004.05.045
http://www.ncbi.nlm.nih.gov/pubmed/15553143
http://dx.doi.org/10.1016/S0899-9007(01)00695-5
http://dx.doi.org/10.1111/1541-4337.12351
http://dx.doi.org/10.1002/jps.21851
http://dx.doi.org/10.1016/S0014-5793(98)01101-6
http://dx.doi.org/10.1007/s00394-003-0397-3
http://dx.doi.org/10.1016/0271-5317(96)00032-2
http://dx.doi.org/10.1016/S0006-2952(02)01510-1
https://www.hindawi.com/journals/bmri/2015/905215/
https://www.hindawi.com/journals/bmri/2015/905215/
http://dx.doi.org/10.1016/j.jpba.2013.09.013
http://www.ncbi.nlm.nih.gov/pubmed/24176739
http://dx.doi.org/10.1124/dmd.105.005926
http://www.ncbi.nlm.nih.gov/pubmed/16081670
http://dx.doi.org/10.1016/j.bcp.2011.01.004


Nutrients 2019, 11, 2288 17 of 19

52. Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability.
Am. J. Clin. Nutr. 2004, 79, 727–747. [CrossRef] [PubMed]

53. Mullen, W.; Rouanet, J.-M.; Auger, C.; Teissèdre, P.-L.; Caldwell, S.T.; Hartley, R.C.; Lean, M.E.J.; Edwards, C.A.;
Crozier, A. Bioavailability of [2-(14)C]quercetin-4′-glucoside in rats. J. Agric. Food Chem. 2008, 56, 12127–12137.
[CrossRef] [PubMed]
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