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Abstract: The aim of this publication is to compile a summary of the findings regarding punicalagin
in various tissues described thus far in the literature, with an emphasis on the effect of this substance
on immune reactions. Punicalagin (PUN) is an ellagitannin found in the peel of pomegranate (Punica
granatum). It is a polyphenol with proven antioxidant, hepatoprotective, anti-atherosclerotic and
chemopreventive activities, antiproliferative activity against tumor cells; it inhibits inflammatory
pathways and the action of toxic substances, and is highly tolerated. This work describes the source,
metabolism, functions and effects of punicalagin, its derivatives and metabolites. Furthermore, its
anti-inflammatory and antioxidant effects are described.
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1. Introduction

Eating a diet involving increased amounts of fruits and nuts is very beneficial for
human health and can serve for the prevention of various diseases. Currently, there is a
growing interest in research regarding the components of pomegranate (Punica granatum) in
terms of healthy nutrition and medicine. It is used mainly in Asian countries in traditional
medicine and has long been considered as a blood tonic [1]. However, it is now also widely
grown in parts of Southwest America, Arizona, Mexico, California and Africa [2].

The inclusion of drinking pomegranate juice is associated with health benefits, which
can partly reduce inflammatory processes, inhibit and prevent carcinogenesis, alleviate
diabetes and promote wound healing via antioxidant activity [3–5]. These benefits are
attributed to polyphenols, which consist mainly of hydrolyzed tannins [6]. The most
abundant ingredient in pomegranate peel is punicalagin (PUN). Gil et al. [7] state that 87%
of the antioxidant activity measured in pomegranate juice is due to its hydrolysable tannin
content, including PUN. It can reach concentrations of >2 g/L in juice [8]. It consists of
glucose, which is located in the center of PUN. Glucose exists in α- and β-anomeric forms
esterified with ellagic acid (EA), gallic acid dimers, gallagic acid and EA dimers [6,9].

Tannins are generally known for their ability to bind to molecules, such as proteins,
polysaccharides, metals and DNA [10]. Kulkarni et al. showed that PUN has a high affinity
for metal ions and bovine serum albumin but very weak and non-specific binding to
DNA [11].

Several in vitro studies have confirmed a wide range of biological activities for this
substance. PUN has been shown to stimulate apoptosis in promyelocytic leukemia cells,
colon cancer cell lines and glioma cells, in addition to inhibiting cancer cell proliferation
and modulating inflammatory subcellular signaling pathways [12,13]. PUN can also be
very useful as a broad-spectrum antiviral agent to reduce recurrent disease-causing viruses

Nutrients 2021, 13, 2150. https://doi.org/10.3390/nu13072150 https://www.mdpi.com/journal/nutrients

https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0001-6074-785X
https://orcid.org/0000-0003-0570-259X
https://doi.org/10.3390/nu13072150
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nu13072150
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu13072150?type=check_update&version=1


Nutrients 2021, 13, 2150 2 of 13

(HCV, RSV and HSV-1), which are known to use viral glycoprotein interactions with cell
surface glycosaminoglycans to enter the host cell [14].

In addition, PUN, EA and its derivatives have been shown to have antimutagenic,
antioxidant properties and can protect DNA [15]. In addition, it is used to decrease the
symptoms of cardiovascular disease, diabetes, diarrhea, bronchitis, asthma, bleeding disor-
ders, fever, cough, inflammation, atherosclerosis, acquired immunodeficiency syndrome,
mouth lesions, ulcers, skin lesions, malaria, prostate cancer, hypertension, periodontal
disease, hyperlipidemia, male infertility, vaginitis, erectile dysfunction, obesity, pediatric
cerebral ischemia and Alzheimer’s disease [2].

2. Methods

The keywords “punicalagin”, “ellagitannins”, “effect of punicalagin”, “metabolism
of ellagitannins”, “immune function of punicalagin”, “pomegranate”, “bioavailability of
punicalagin” and “pharmacological effect of punicalagin” were used to search publications
that had been entered into online databases, such as the Web of Science, Pubmed and
Science Direct. A total of 209 articles were found by searching for keywords in the Web
of Science online database. Obtained articles were subsequently manually searched, and
non-matching articles were discarded.

3. Metabolism and Bioavailability of Punicalagin

The metabolism of ellagitannins in the gastrointestinal tract is complicated. All ellagi-
tannins, including PUN, have the same ability to be hydrolyzed in the small intestine to
EA [16]. However, the bioavailability of ellagitannins and EA is very low, and compounds
that are unable to be absorbed are then further metabolized [17]. EA is metabolized to
catabolic intermediates by a series of decarboxylation reactions performed by intestinal
microbiota. Bacteria produce dibenzopyran-6-one derivatives or urolithins [18].

Due to the complex catabolism of these substances, the real bioactive molecules could
be urolithins rather than PUN or EA. Urolithins are formed from EA by the loss of one of the
two lactones and the gradual removal of hydroxyl groups. From a chemical point of view,
they can be said to be a combination of coumarin and isocoumarin (benzocoumarins) [17].

The end products are urolithin A, urolithin B and isourolithin A. Researchers found
that not every individual was able to produce the final metabolites of urolithin due to
differences in intestinal microbiota. Three different metabotypes of urolithin (UM) have
been identified, namely UM-A (individuals who are only able to produce urolithin A),
UM-B (individuals who are able to produce urolithin A, urolithin B and also isourolithin
A) and UM-0 [19,20].

This classification is defined on the basis of the type of urolithin present in the urine
24 h after ingestion [18]. The components of the intestinal microbiota involved in the
conversion of EA to intermediate urolithins in humans are bacteria of the genus Gor-
donibacter [21,22]. A positive correlation of these fecal bacteria with urolithin A content
in feces and urine was found [23]. The amount of Gordonibacter bacteria was found to
be higher in individuals with urolithin metabotype A compared with individuals with
urolithin metabotype B or 0 [24]. Genes encoding enzymes involved in the metabolism of
EA to urolithins have also been investigated. Candidate enzymes that could be involved
in the EA metabolism are tannin acetylhydrolase, dehydroxylase and gallate decarboxy-
lase [25].

Due to the rapid conversion of ellagitannins to EA in the gastrointestinal tract, the
relevance of the direct application of ellagitannins, such as PUN, in in vitro cultures may
be questioned [18]. The first bioavailability testing of pomegranate ellagitannins was
performed on rats and showed that, after the ingestion of large amounts of ellagitan-
nins, metabolites such as urolithins A, B and C, and minor amounts of dimethyl ether-
glucuronide of ellagic acid were detected in the plasma and urine [26]. After long-term
intake, small amounts of PUN were detected in rats; however, this was not confirmed in
further human studies [27].
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Gonzales et al. conducted research with healthy volunteers who consumed two
pomegranate extracts that differed in free EA content. Simultaneously, they simulated
gastric and intestinal conditions (pH and protein content) to elucidate various factors
involved in the bioavailability of free EA, the role of PUN as a precursor to EA, the EA
catabolism to urolithins and the potential impact of pH and protein on PUN and EA
solubility and bioavailability [20].

Research demonstrated that released EA is detected in blood plasma at a maximum
concentration of 100 nM 1 h after administration, even with a high intake of free EA, and
remains there for 5–24 h [17,20]. Control tests were performed to identify the impact of the
pH and protein content on EA and PUN. The solubility of free EA was found to be pH
dependent (pH 7–8) and no significant protein binding was found. In the case of PUN, the
solubility was not pH-dependent; however, in the presence of a protein-rich medium, PUN
binding to proteins occurred, and it was confirmed that, under these conditions, there was
no hydrolysis of PUN and subsequent release of free EA [20].

Although promising therapeutic effects of PUN and EA have been shown in preclinical
studies, the solubility of these substances is insufficient to achieve effective use after oral
administration. According to the Biopharmaceutical Classification System (BSC), which
classifies drugs based on their water solubility and intestinal permeability, EA is classified
as a Class IV drug (i.e., a drug with low solubility and permeability). This greatly limits its
clinical use [28].

An improvement in the bioavailability of PUN and EA can be achieved by reduc-
ing the particle size using a micronization technique [29]. Nanoparticles are commonly
produced by controlled precipitation, crystallization, high pressure homogenization, wet
bead milling and the use of supercritical fluids [30]. Another possible alternative to im-
prove the bioavailability is to encapsulate PUN or EA in biodegradable nanoparticles. The
latest, innovative and highly biocompatible EA formulations consist of pectin-dried disper-
sions, cyclodextrin-based nanosponges, zein nanocapsules, chitosan/alginate microspheres,
lactoferrin/chondroitin sulfate nanoparticles and supersaturated self-microemulsification
delivery systems [28].

4. Methods of Determination PUN and EA

Analytical methods, including gas chromatography, liquid chromatography (HPLC) and
mass spectrometry, are widely used to verify PUN and related substances in pomegranate [6].
HPLC is used to separate the components of a sample in order to determine their presence
and concentration in the sample or to isolate the individual components of the mixture. Qu
et al. developed a method for the determination of ellagic, gallic acid and PUN-A and -B
using HPLC. The advantages of the HPLC method are good linearity imaging, double repro-
ducibility, high recovery rate with low limit of detection and quantification. Compared to
existing methods, this method offers a significant improvement in sample permeability and
allows for the quantification of the four major polyphenolics in a single run [31]. Other analyt-
ical methods used included Fourier transform infrared spectroscopy and nuclear magnetic
resonance (NMR) spectroscopy [6].

5. Anti-Inflammatory and Immunosuppressive Effect

The inflammatory response is a complex set of interactions between harmful factors
and cells that can arise in any tissue due to infectious, toxic or autoimmune damage [32].
An appropriate inflammatory reaction is the body’s defense mechanism, which removes
harmful stimuli and initiates the healing process [33]. The incidence of inflammatory dis-
eases has increased worldwide, and they are treated with conventional anti-inflammatory
drugs, such as steroids and NSAIDs.

However, their long-term use can cause a number of side effects, which can be very
serious [34]. In the last decade, researchers have studied the components of pomegranates,
and they confirmed that their antioxidant, anti-inflammatory and immunosuppressive
effects may contribute to treatment due to their pharmacological effects [33,35].
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5.1. NF-kB and MAPK Activation Inhibitor

Recent studies indicated that PUN inhibits the production of tumor necrosis factor
alpha (TNF)-α and interleukin (IL)-1β or IL-6 by macrophages RAW264.7 and in primary
human chondrocytes. RAW264.7 macrophages were stimulated with lipopolysaccharide
(LPS) [36]. LPS is the most abundant component in the cell wall of Gram-negative bacteria
and is a potent activator of macrophages in various cell types that produce a number
of proinflammatory mediators, such as NO, PGE2 and interleukins, leading to an acute
inflammatory response to pathogens [34,37].

Bacterial LPS are widely used in the study of inflammation because they stimu-
late many inflammatory cytokines, such as TNF-α, IL-1β and IL-6 [37]. The study by
Xu et al. [33] and Cao et al. [36] independently found that PUN at the concentration used
strongly inhibited LPS-induced NO, PGE2, IL1β, IL-6 and TNF-α secretion in RAW264.7
cells. PUN was also found to attenuate LPS-induced phosphorylation of NF-kB, p38, JNK
and ERK MAPK, suggesting that PUN suppresses NF-kB and MAPK signaling pathways
to suppress NO, TNF-α and IL-6 induced by LPS. As inflammation is a main etiological
factor that is important to many chronic diseases; therefore, this anti-inflammatory activity
of PUN has great potential for preventing many diseases and towards health promotion
and anti-inflammatory drug development [33,36].

5.2. Nuclear Factor of Activated T-Cells Activation Inhibitor

The transcription factor nuclear factor of activated T-cells (NFAT) plays a crucial role
in the expression of autocrine growth factor IL-2, which promotes T cell proliferation
by interacting with the IL-2 receptor (IL-2R) [38]. As T cell activation is a major point
in the development of autoimmune diseases, Lee et al. conducted research into natural
products that suppress T cell activity. PUN was found to strongly suppress the immune
system due to its inhibitory effect on NFAT activation. PUN reduced IL-2 mRNA and
protein expression from anti-CD3/anti-CD28 stimulated mouse spleen CD4+ T cells and
suppressed the mixed lymphocyte response (MLR) without exhibiting cytotoxicity to
the cells. In vivo treatment with PUN inhibited chronic ear swelling in mice induced by
phorbol 12-myristate 13-acetate (PMA) and reduced the infiltration of inflamed tissue by
CD3+ T cells [35].

5.3. Apoptosis, Proliferation and Angiogenesis

Apoptosis is a process of programmed cell death. It commonly occurs during devel-
opment, aging and as a homeostatic mechanism to maintain cell populations in tissues. It
also occurs as a defense mechanism, for example in immune reactions or when cells are
damaged by disease or harmful substances [39,40]. PUN is known to stimulate apoptosis
in colon cancer cell lines, promyelocytic leukemia cells and glioma cells [41]. The effect of
PUN was found in cervical cancer, where PUN stimulated cell apoptosis and blocked cell
proliferation by suppressing NF-kB [41,42].

The NF-kB signaling pathway is activated in many types of cancer and serves as an
inducible modulator of tumorigenesis [43], which is responsible for the transcription and
control of genes regulating various cellular functions [41]. NF-kB signaling controls a large
number of cellular processes, including immune responses, proliferation, immune cell
viability, lymphogenesis and B cell maturation [44]. Huang et al. were the first to report
that PUN treatment in osteosarcoma cells significantly inhibited cell proliferation, invasion
and apoptosis. Disorders of angiogenesis were also observed after PUN injection [44].

Previous research has shown that PUN has the effect of increasing the expression
level of the pro-apoptotic marker (Bax) X-protein and down-regulating the protein ex-
pression status of antiapoptotic markers (Bcl-XL and Bcl-2) in the prostate cancer cell line
LAPC4 [41,45]. Similarly, PUN and its metabolites induce an intrinsic pathway of apoptosis
in human colon cancer cells through the down-regulation of Bcl-XL with mitochondrial
release of cytochrome c into the cytosol and activation of caspase-9 and caspase-3 [12,39,41].
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In addition to regulating cancer cell proliferation and apoptosis, PUN has the effect of
reducing the expression of cell cycle proteins, including cyclin A, cyclin B, cyclin D1, cyclin
D2 and cyclin E [46,47]. Tang et al. found that the Wnt/β-catenin pathway is associated
with cervical cancer. In this study, PUN was found to reduce the expression of β-catenin
and its subsequent proteins, including cyclin D1, which is essential for retinoblastoma
phosphorylation and its release from the transcription factor E2, leading to cell cycle
progression and cell proliferation [12].

Treatment of PUN cells leads to many molecular features of apoptosis. Although PUN
is able to induce apoptosis, an alternative pathway of cell death—so-called autophagy—is
also activated [47].

5.4. Autophagy

Autophagy is type II cell death. It is a process that ensures a balance between synthesis
and degradation, involving the degradation of long-lived intracellular proteins or damaged
organelles by the lysosomal apparatus [47]. A study by Wang et al. demonstrated that
PUN activates AMP-activated protein kinase (AMPK) and at the same time increases the
phosphorylation of cyclin-dependent kinase p27 (Kip1) on Thr 198, which, in turn, leads to
the induction of cellular autophagy in human glioma cells via the LKB1-AMPK-p27 signal-
ing pathway [47]. This hypothesis was verified in a study by Liang et al., whose research
showed that activation of the LKB1-AMPK pathway increased p27 phosphorylation at Thr
198, leading to p27 stabilization and the subsequent induction of cellular autophagy [48].

6. Pharmacological Effect of Punicalagin and Metabolites
6.1. Antibacterial Effect

Studies have shown antibacterial effects of PUN against Gram-positive and Gram-
negative bacteria. PUN and EA have been proven to have antimicrobial activity against,
Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and some species of Clostridia [49].
PUN has been confirmed to inhibit the growth of cariogenic bacteria at high concentrations;
however, at subbactericidal concentrations, it inhibits biofilm development and the produc-
tion of acidic and extracellular polysaccharides by Streptococcus mutans, suggesting that PUN
has the potential to prevent tooth decay [50].

6.2. Antiviral Effect

Lin et al. performed an extensive analysis of the effect of hydrolysable tannins on a
panel of viruses. The route of virus binding, infection entry and spread during treatment
with these substances was studied. Antiviral activity was found against viruses known
to use cell surface glycosaminoglycans (GAGs) to enter the host cell. The study reported
that PUN was effective in suppressing human cytomegalovirus (HCMV) virus, herpes
simplex virus (HSV-1), hepatitis C virus (HCV), respiratory syncytial virus (RSV), measles
(MV) and dengue virus (DENV), at various concentrations without significant cytotoxic-
ity [14]. Tito et al. even reported in their study that PUN and EA inhibited the interaction
between Spike protein and ACE2 and reduced viral 3CL protease activity in vitro, indicat-
ing the potential use of pomegranate extract as a prevention and treatment for SARS-CoV-2
disease [51].

6.3. Antioxidant Activity—Oxidative Stress

The cause of oxidative stress is an imbalance between the accumulation and produc-
tion of oxygen-reactive species (ROS) in cells and tissues and the ability of the biological
system to detoxify these reactive products [52]. As a result of this imbalance, important
cellular macromolecules (lipids, carbohydrates, proteins and DNA) are damaged. Ox-
idative stress is also associated with the manifestation of many chronic diseases, such as
metabolic, neurodegenerative, cardiovascular, lung, kidney and cancer diseases [53,54].
Several antioxidants have been described that have a beneficial effect against oxidative
stress, including PUN, and metabolized EA and urolithins.
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Sun et al. described their research, in which they used different antioxidant assays
(ferric reducing antioxidant power and lipid peroxidation) or free radical scavenging assays
(DPPH and O2

−). Tests confirmed strong antioxidant capacities of PUN, PL (punicallin)
and EA, with differences that could be related to different polymerization and number of
unsaturated double bonds [55].

Some publications suggested that PUN and PL could have a greater ability to scavenge
free radicals than EA due to their high degree of hydroxylation [56]. Results by Sun et al.
showed that PL represented the lowest LPO inhibitory capacity of all three compounds.
All three compounds showed a strong antioxidant effect; however, their abilities differed
in the type of free radicals. EA was more effective than PUN or PL in protecting against
oxidative damage In vivo, especially intestinal damage [55].

EA-derived urolithins have also been recognized as modulators of oxidative stress.
Bialonska et al. performed a test measuring the ability of test compounds (urolithin A;
B; C; D; 8-O-methylurolithin A; 8,9-di-O-methylurolithin C; and 8,9-di-O-methylurolithin
D) to inhibit intracellular ROS production. The results showed a significant antioxidant
effect of urolithins correlated with the number of hydroxyl groups and the lipophilicity of
the molecules. The highest antioxidant activity was found for urolithin C (IC50 = 0.16 µM)
and urolithin D (IC50 = 0.33 µM). Urolithin A showed less significant antioxidant activity
(IC50 = 13.6 µM), while urolithin B and all methylated urolithins did not show any antiox-
idant activity at all. The results of this study showed that urolithins may have systemic
antioxidant effects [57].

6.4. Hepatoprotective Activity

Fouad et al. found that PUN was able to protect against cyclophosphamide-induced
hepatotoxicity (CYP) in rats. CYP is an alkylating nitrogen yperite used as an anticancer
and immunosuppressive agent. However, this substance has many toxic effects that
inhibit its effectiveness [58]. The metabolites formed from cyclophosphamide in the liver
(phosphoramide and acrolein) increase the formation of reactive oxygen species (ROS).

This leads to oxidative stress and the subsequent activation of the NF-κB signaling
pathway regulating the inflammatory cascade and the production of proinflammatory
cytokines, i.e., TNF-α and IL-1β [59]. CYP has been shown to cause significant damage to
liver tissue and apoptosis and necrosis in liver tissue, respectively. PUN can maintain liver
tissue integrity and reduce the liver damage scores to controllable levels [58].

In another study, rats were administered acrylamide (ACR), which is commonly used
in industries. ACR causes oxidative stress and triggers apoptosis in the brain and liver
tissues [60]. After the application of ACR (50 mg/kg/11 days), severe motor disorders
were observed in rats, while pretreatment of rats with various doses of PUN, especially
20 mg/kg, reported protective effects against ACR toxicity in the tissues tested. The
antioxidant and antiapoptotic attribute of PUN can be regarded as the main mechanisms
of protection against ACR-induced toxicity [60].

6.5. Anti-Diabetic and Anti-Obesity Activity

Currently, obesity and diabetes have become an increasingly serious health problem
for people. A recent study on metabolic diseases, such as diabetes and obesity, showed
that PUN, EA and urolithin A had the capability to inhibit enzymes associated with
carbohydrate and triglyceride metabolism, such as DPP-4, α-GLU and lipase. During
the differentiation of the 3T3-L1 cell line with these polyphenols, the efficiency of these
compounds to inhibit adipogenesis as well as the ability to reduce triglyceride accumulation
was demonstrated. They have also been shown to have the potential to modulate the
expression of genes that regulate fatty acid and glucose metabolism, such as the GLUT4,
FABP4, adiponectin and PPARy genes, which are commonly used as markers of adipocyte
differentiation [61].

The research of Wu et al. demonstrated that PUN and EA remarkably inhibited lipid
accumulation in 3T3-L1 adipocytes in a dose-dependent manner. The 3T3-L1 cell line
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derived from disaggregated Swiss mouse 3T3 embryos is the most widely used and reliable
model of adipocyte culture. In this study, they found that 5.24 µg/mL (5 µM) PUN and
4.5 µg/mL (15 µM) EA showed the same inhibitory activities with C75 and EGCG but at
much lower concentrations. Thus, PUN and EA showed stronger inhibitory effects than
the classical fatty acid synthase (FAS) inhibitors C75, cerulenin and EGCG. As FAS plays a
major role in the fatty acid biosynthetic pathway, these findings suggest that PUN and EA
are potentially useful in the prevention and treatment of obesity [62].

In a study by Requero et al., six plant extracts were selected for research. The aim was
to investigate the metabolic processes involved in the activation of thermogenesis and the
increase in mitochondrial respiratory capacity as complementary approaches to increase
energy expenditure in obesity-related metabolic changes. The results showed that PUN
increased the expression of UCP1, UCP2, BMP8B and CKMT2 in mature adipocytes in
line with increased mitochondrial H+ leakage and decreased neutral lipid accumulation,
suggesting a positive effect on the induction of thermogenesis in white adipose tissue [63].

6.6. Anti-Atherosclerotic Activity

Atherosclerosis is a chronic disease due to many factors (e.g., fatty food intake and
genetics) that damage the artery wall and vascular function. The disease is characterized
by impaired lipid metabolism and endothelial function. It is also one of the major causes of
death worldwide. Endothelial dysfunction is characterized by the increased expression of
adhesion molecules, such as vascular cell adhesion molecule-1 (VCAM-1) and intercellular
adhesion molecule-1 (ICAM-1), allowing the accumulation of monocytes in the suben-
dothelial matrix. Infiltrating monocytes differentiate into macrophages and/or dendritic
cells. The intake of native LDL and oxidized low density lipoprotein (oxLDL) by these cells
leads to the formation of foam cells, which, in turn, leads to atherosclerosis [64,65].

As cholesterol degradation has been found to be indirectly associated with the occur-
rence of cardiovascular events, research has been conducted that shows a link between
cholesterol degradation capacity and cardiovascular mortality. Ellagitannins and their
bioactive compounds, which are converted to low molecular weight compounds, including
urolithin B, by intestinal microbiota, have been shown to significantly increase the degrada-
tion of cholesterol from macrophages. The data from the study demonstrated that urolithin
B was able to reduce lipid plaque deposition and modulate the expression of Scavenger
Class B receptors type I (SR-BI) and ABCA1 involved in reverse cholesterol transport [66].

Cui et al., in their study, investigated whether urolithin A had therapeutic potential
in ameliorating atherosclerotic lesions in Wistar rat models. These rats were fed a high
cholesterol diet supplemented with vitamin D3 for 12 weeks. Subsequently, the rats were
administered urolithin A (3 mg/kg/day) three days before aortic injury. After twelve
weeks of urolithin A treatment, there was a significant reduction in the plasma lipid and
Ang II levels and an improvement in the aortic lesion compared to the placebo group.
There was increased expression of SR-BI, inhibition of p-ERK1/2 and activation of the Nrf-2
signaling pathway. The SR-BI expression was indirectly correlated with Ang II levels [67].

In the study by Mele et al., the effects of the metabolites of ellagitannins Uro A, Uro B,
Uro C and Uro D as well as their precursor EA, which were investigated at low concen-
trations of µM (1–10 µM) in two main events leading to the formation of atherosclerotic
plaques, namely endothelial activation and the resulting recruitment of circulating mono-
cytes and cholesterol transport and foam cell formation. Of the metabolites tested, Uro C
was the most potent with biological activity similar to EA, while Uro A and Uro B were
active in combination at 10 µM [64].

7. Toxicological Findings and Genotoxicity

There have been, thus far, only a few scientific studies describing the toxicity of
the ellagitannins contained in pomegranate. Research in cattle indicates that the intake
of large amounts of ellagitannins, especially PUN, was associated with hepatotoxicity
and nephrotoxicity [17,68]. In a study of a complex mixture of pomegranate, tannins
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were recognized as antioxidants but were found to have some genotoxic activity [69].
Labieniec et al. argued that tannic acids, including tannin, gallic and ellagic acids, could
contribute to the formation of single-stranded DNA breaks [70].

Research conducted on cultured Chinese hamster B14 cells found that the tannin
components, which are called antioxidants, can act as prooxidants [70]. The study by
Xu et al. stated that PUN had no cytotoxic effect at concentrations from 0 to 400 µM
in the treatment of RAW264.7 cells, suggesting that PUN had an inhibitory effect not
due to a decrease in cell viability [33]. The repeated oral administration of high doses of
pomegranate PUN to rats for 37 days was non-toxic, and it is expected that PUN could be
used in humans without bringing about severe toxicity [68].

Likewise, the research of Zahin et al. confirmed that, in a genotoxicity study, PUN
and EA did not show any mutagenic effect on Salmonella typhymurium, on the contrary,
they showed protection against DNA damage and high antiproliferative activity. PUN and
EA have been shown to have almost similar levels of antimutagenic properties against a
number of mutagens and may be promising candidates for future anticancer drugs [15].

8. Conclusions

PUN and its metabolites have been shown to inhibit angiogenesis, proliferation, and
induce apoptosis in osteosarcoma cancer cells, prostate cancer, colon cancer and cervical
cancer cell lines. PUN also suppresses various signaling pathways, including NF-kB,
MAPK, Bcl-XL and LKB1-AMPK-p27, suggesting that PUN could have potential for ther-
apeutics of various immune diseases, including cancer, atherosclerosis, hyperlipidemia,
myocardial ischemia, diabetes, inflammation and infections, male infertility, brain dam-
age, obesity and Alzheimer’s disease (Figure 1). For information summarizing in vitro,
preclinical and interventional studies conducted with PUN, see Table 1.
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Table 1. Summary of the in vitro, preclinical and interventional studies involving punicalagin research.

In Vitro Preclinical Clinical/Interventional Aim/Mechanism References

KB and CAL27 oral cancer,
SW480, SW620, HT29 and
HCT116 colon cancer and

RWPE-1 prostate cancer cell lines

- - Apoptotic and
antioxidant activity [8]

Vero (normal African green
monkey kidney cell line), Hep-2
(human larynx epithelial cancer

cell line), and A-549 (human
small cell lung carcinoma cell

line)

- - ROS elimination and
antioxidant activity [11]

HeLa cells - -
Antiproliferative

activity (β-catenin
signaling pathway)

[12]

Vero (African green monkey
kidney cells, ATCC CCL-81),
HEL (human embryonic lung

fibroblast, ATCC CCL-137), and
A549 (human lung carcinoma,

ATCC CCL-185)

- - Antiviral activity [14]

- -

20 young healthy volunteers
(10 men (BMI 21.8 ± 2.5

kg/m2) and 10 women (BMI
23.4 ± 1.6 kg/m), with an

average age of 20.5 ± 2.0 and
21.5 ± 1.5 years

Bioavailability of PUN
and EA [20]

- -

Healthy volunteers (n = 49, 32
men and 17 women; BMI > 27
kg/m2) aged between 40 and

65 years

Metabolism EA [23]

- Rat -
Bioavailability and
metabolism of PUN

and EA
[26]

- - Healthy volunteers (n = 6, 4
men and 2 women)

Bioavailability and
metabolism of PUN

and EA
[27]

RAW264.7 cells - - Anti-inflammatory
activity [32]

RAW264.7 cells - - Anti-inflammatory
activity [33]

Splenocytes from Balb/c mice
and normal splenocytes from

C57 Bl/6 mice
Mouse Balb/c - Immunosuppressive

activity [34]

RAW264.7 cells - - Anti-inflammatory
activity [35]

PBMCs from healthy volunteers - - Anti-inflammatory
activity [36]

Jurkat E2 cells and PBMC - - Immunosuppressive
activity [37]

Buňky (ME-180)—Cell
carcinoma of the cervix uteri - -

Apoptotic activity
through the

mitochondrial and
NF-kB pathway

[40]
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Table 1. Cont.

In Vitro Preclinical Clinical/Interventional Aim/Mechanism References

- Mouse (Swiss
Webster) - Chemoprotective and

angiogenic activity [41]

human osteosarcoma cell lines
(U2OS, MG63 and SaOS2) and

normal osteoblast cell line
(hFOB1.19)

- - Antiproliferative
activity [43]

human colon cell line Caco-2
and the normal colon cells

CCD-112CoN
- - Apoptotic activity [45]

human U87MG glioma cells - - Apoptotic activity [46]

Streptococcus mutans - - Antibacterial activity [49]

SARS-CoV-2 (spike protein) - - Antiviral activity [50]

- Mouse Balb/c - Antioxidant activity [54]

- Male Rats
(Sprague-Dawley) - Antihepatotoxicity [57]

- Male Wistar rats - Antihepatotoxicity and
antineurotoxicity [59]

3T3-L1 murine pre-adipocytes - - Antiobesity activity [60]

3T3-L1 mouse adipocytes - - Antiobesity activity [61]

Human adipocytes (SGBS),
human myocytes (HSMM) - - Antiobesity activity [62]

Human Umbilical Vein
Endothelial Cells (HUVECs) - - Antiatherogenic effects [63]

THP-1 cells (Human
immortalized cells, ATCC,

TIB-202)

Male apoE−/−
mice - Anti-atherosclerotic

activity [65]

- Wistar rats (n = 48) - Anti-atherosclerotic
activity [66]

- Sprague−Dawley
rats - Toxicity effect [67]

Chinese hamster ovary (CHO)
cells Mouse Balb/c - Genotoxicity effect [68]

Chinese hamster cells (B14 cell
line)

Genotoxicity and
cytotoxicity effect [69]

ROS: oxygen-reactive substances, BMI: body mass index, PUN: Punicalagin, EA: ellagic acid, PBMCs: Peripheral blood mononuclear cells.

The question of whether PUN, EA or urolithins are actually responsible for health
benefits has not yet been clarified and is still under discussion. The fact is that virtually
only urolithins are adsorbed, able to circulate in the blood and reach different target tissues,
where they trigger different molecular and cellular reactions. They are believed to be a true
bioactive compound. However, a solution to the bioavailability of PUN could be to reduce
the molecule and encapsulate it. However, this requires further investigation into whether
the biological effects of PUN, EA or urolithins reported in vitro may be of real significance
in vivo.
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