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Abstract: In recent years, there has been a growing interest in identifying and applying new, naturally
occurring molecules that promote health. Probiotics are defined as “live microorganisms which,
when administered in adequate amounts, confer health benefits on the host”. Quite a few fermented
products serve as the source of probiotic strains, with many factors influencing the effectiveness of
probiotics, including interactions of probiotic bacteria with the host’s microbiome. Prebiotics contain
no microorganisms, only substances which stimulate their growth. Prebiotics can be obtained from
various sources, including breast milk, soybeans, and raw oats, however, the most popular prebiotics
are the oligosaccharides contained in plants. Recent research increasingly claims that probiotics and
prebiotics alleviate many disorders related to the immune system, cancer metastasis, type 2 diabetes,
and obesity. However, little is known about the role of these supplements as important dietary
components in preventing or treating cardiovascular disease. Still, some reports and clinical studies
were conducted, offering new ways of treatment. Therefore, the aim of this review is to discuss the
roles of gut microbiota, probiotics, and prebiotics interventions in the prevention and treatment of
cardiovascular disease.
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1. Introduction

In recent decades, the incidence of cardiovascular disease (CVD) increased to such ex-
tant that they became the principal cause of death worldwide. This is especially noticeable
in high- and intermediate-income countries. However, the complex etiologies of CVD and
the incomplete understanding of the underlying mechanisms hampered the development
of prevention strategies [1].

An unhealthy diet has long been recognized as a major factor for cardiovascular
disease morbidity. A connection between diet and cardiovascular events was established
through the determinants of metabolic stress and overweight, i.e., adiposity and the pres-
ence of visceral fat [2]. While genetic variation has an important influence on Body Mass
Index and the distribution of body fat, environmental factors are believed to make a ma-
jor but still-to-be elucidated contribution to the variation in obesity between different
individuals [2,3]. It was not until recently that the complex interactions between dietary
components and intestinal microbiota and their food-produced metabolites were acknowl-
edged to play a role in cardiovascular health. Increasing awareness of the role of the gut
microbiome in CVD attracted the attention of researchers interested regarding the potential
role of probiotics as a study target, e.g., in the prevention of atherosclerosis and other forms
of CVD [3,4]. Although knowledge of the changes in the composition of the microbiome
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associated with coronary heart disease or atherosclerosis is still limited, there is a growing
body of evidence supporting this relationship [5].

Functional foods can have beneficial effects against various risk factors associated with
cardiovascular disease. However, little is known about the roles of probiotic and prebiotic
supplements as important dietary components in the prevention and treatment of CVD [6].
Therefore, the aim of this review is to discuss the roles of gut microbiota and probiotics
supplementation in the development of cardiovascular disease based on available reports
and clinical studies.

2. Cardiovascular Disease: Risk Factors and the Mechanism of Development

Cardiovascular diseases involve the heart or blood vessels, the most well-known
being coronary artery disease, stroke, hypertensive heart disease, cardiomyopathy, venous
thrombosis, arrhythmia, and thromboembolic disease. CVD is a growing global health
problem [7–9]. In 2015, 18 million deaths were attributed to cardiovascular diseases,
accounting for approximately one-third of all-cause deaths and representing an increase
of 12.5% from 2005. The American Heart Association reports that 92.1 million adults in
the US currently have CVD, and it is predicted that approximately 43.9% of the entire U.S.
population will have CVD by 2030 [10].

Atherosclerosis is a lipid-driven, chronic, inflammatory disease that is characterized
by the formation and progressive growth of atherosclerotic plaques in the walls of arteries.
Atherosclerosis is a major predisposing factor for stroke and heart attack. Various immune-
mediated mechanisms are implicated in the disease initiation and progression [11]. The
initiating incidents of atherogenesis include the retention of lipoproteins in the subendothe-
lial space of the arteries and the activation of endothelial cells. Monocytes enter the vascular
wall and differentiate into tissue macrophages. The macrophages ingest lipoproteins and
turn into foam cells. Synthetic vascular smooth muscle cells accumulate in atheromas
and secrete extracellular matrix proteins. Smooth muscle cells and collagen are important
components of the fibrous cap that covers the atherosclerotic plaque [12].

Factors that influence the risk of developing cardiovascular diseases include genetics
and a poor lifestyle (lack of activity, unhealthy diet, smoking, alcohol). Hypertension is
the most common modifiable risk factor in CVD [13,14]. High blood pressure is often
associated with metabolic deregulation, which leads to high blood cholesterol levels that,
such as glucose in type 2 diabetes, damage blood vessels and lead to atherosclerosis. The
mutual interaction between hypertension and hypercholesterolemia and their influence on
the development of atherosclerosis include the renin–angiotensin–aldosterone system and
endothelial dysfunction [12,15].

3. Gut Microbiota and Its Effects on Human Health

Microbes colonize all surfaces of the human body, but the human gut is the site of
a particularly rich microbiome. It is characterized by an ecological diversity of microor-
ganisms, with more than 100 trillion microbial cells living symbiotically within it [16].
Microbial colonization in the gastrointestinal tract starts immediately after birth. In healthy
people, the microbiota lives in a symbiotic relationship with the host, influencing host
health by regulating the metabolism of nutrients, protecting against pathogens [17], and
providing signals to immune cells to improve host physiology and immunity [18–21].

Research links the gut microbiota to the development of several cardio-metabolic dis-
eases, including obesity, type 2 diabetes mellitus (T2DM), and cardiovascular disease [22–25].
The microbiome, particularly in the colon, forms a “bioreactor” that ferments food com-
ponents that have escaped digestion in the upper parts of the intestine (proteins, carbo-
hydrates, and dietary fibers), breaking these into metabolites or microbial products, e.g.,
short chain fatty acids and secondary bile acids. The gut microbiota can also transform
other dietary components, e.g., polyphenols, into potentially metabolically more relevant
forms [26]. Hence, it is not surprising that alternations in the gut microbiota composition
might play a role in maintaining human metabolic balance and cardiovascular health.
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4. Gut Microbiota, Its Diet-Derived Products, and Cardiovascular Diseases

Many factors are associated with the increase in risk of CVD [7,8,22], but growing
evidence indicates that the intestinal microbiome and metabolites contribute importantly in
the progression of such diseases. A study conducted by Cui et al. reported that significant
differences in the bacterial composition were found between patients with chronic heart
failure and control subjects. Of particular note, a decrease in the level of F. prausnitzii and
an increase in the level of Ruminococcus gnavus were observed in patients with chronic
heart failure [27]. Another study showed that patients with heart failure had higher
levels of Prevotella, Hungatella, and Succinclasticum and lower levels of the Lachnospiraceae
family (Faecalibacterium and Bifidobacterium) than did control subjects [28]. Moreover,
juxtamucosal bacterial overgrowth and higher bacterial adhesion were observed in patients
with heart failure [29]. In addition, pathogens such as Candida, Shigella, Yersinia, and
Campylobacter were found to be increasingly present in the stools of patients with CVD [30].
Finally, Jie and coworkers [31] analyzed the gut bacterial composition in patients with
atherosclerotic cardiovascular disease and observed significant differences with higher
levels of Enterobacteriaceae and Streptococcus spp.

Gut bacteria are able to produce diet-derived metabolic products capable of influenc-
ing the host’s cardiovascular condition, for example, circulating levels of branched-chain
amino acid metabolites, tryptophan, and histidine were associated with insulin resistance
and vascular disease. An important example is imidazole propionate, which is formed
after the metabolism of histidine. There was a clearly higher concentration of imidazole-
propionate in the portal blood of obese diabetes patients compared to obese patients
without diabetes [6].

The intestinal microbiome communicates with distant organs, including the heart,
through a variety of ways. Among these are the production of trimethylamine (TMA)/
trimethylamine N-oxide (TMAO), short-chain fatty acids, bile acids, lipopolysaccharides
(LPS), and peptidoglycans [22]. TMAO is one of the more extensively studied metabolites
formed by the gut microbiota and comes with a potential role in atherosclerosis. TMA is
formed by gut microbiota after meals containing choline, phosphatidylcholine, or carnitine,
which are present in foods with high levels of saturated or unsaturated fat. Humans do not
possess TMA lyases, so all TMA is formed by the gut microbiota. After absorption, TMA
is transported to the liver, where the hepatic enzyme flavin-monooxygenase-3 (FMO3)
oxidizes TMA to TMAO [6].

Elevated serum levels of TMAO are positively correlated with early atherosclerosis in
humans and monitoring helps to predict mortality risk in patients with stable coronary
artery disease and acute coronary syndrome [32,33]. Studies showed that elevated plasma
levels of TMAO were associated with the severity of peripheral artery disease and with
high risk of cardiovascular mortality in patients with peripheral artery disease [34]. In
meta and dose-response analysis studies, elevated plasma TMAO concentrations correlated
with increased incidence of major adverse cardiovascular events in coronary heart disease
patients [35]. Moreover, increased levels of TMAO were significantly correlated with
proinflammatory monocytes in patients with stroke. Haghikia et al. [36] reported that the
elevated plasma level of TMAO was also associated with increased cardiovascular events
such as myocardial infarction, recurrent stroke, and cardiovascular death. Overall, the
mechanisms underlying the effect of TMAO on CVD are not completely explored.

Many studies showed that short-chain fatty acids (SCFA) have a contributing role
in CVD. High-fiber diet and acetate supplementation were shown to be able to alter the
gut microbiota composition, resulting in the prevention of hypertension and heart failure
in hypertensive mice [37]. Nondigestible fibers are fermented in the colon by gut micro-
biota, which leads to the production of SFCAs, mainly butyrate, propionate, and acetate.
The concentrations of SFCAs are lower in patients with atherosclerotic vascular disease
or hypertension [6]. SCFAs probably have a beneficial effect on atherosclerotic plaque
formation by improving intestinal barrier function [38]. In mouse models of hypertensive
cardiovascular disease, propionate attenuated hypertension and its cardiovascular sequelae
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and reduced the atherosclerotic plaque area and the frequencies of splenic effector mem-
ory T cells and splenic T helper 17 cells [6]. SCFAs modulate immune and inflammatory
responses via many receptors, e.g., via activation of free fatty acid (FFA) receptors and G
protein-coupled receptor 109A and inhibition of histone deacetylases (HDACs) [39]. Since
FFA receptors are present in endothelial cells, binding of SFCAs to receptors may evoke not
only the stimulation and dampening of the production of inflammatory cytokines, but also
influence migration and recruitment of immune cells to the atherosclerotic plaque. SCFA
metabolic effects are also mediated via FFA receptors and have direct effects on endothelial
cells via HDACs.

It is also recognized that bile acids have a contributing role in CVD. These substances
are primarily formed in the liver from cholesterol via two pathways, namely, the classical
pathway and the alternative pathway. In the classical pathway, cholesterol is converted
into the primary bile acids cholic acid and chenoxycholic acid by enzymes [6]. Bile acids
are conjugated with glycine and taurine to form glycocholic acid, taurocholic acid, gly-
cochenoxycholic acid, and taurochnoxycholic acid; these compounds lower pH and the
solubility of many nutrients is improved. These bile acids are released into the duode-
num, especially after the intake of food, to facilitate digestion and improve the uptake
of lipids and lipophilic vitamins [40]. The majority of these substances are reabsorbed
in the distal ileum via the sodium-dependent bile acid transporter and returned to the
liver via the portal system [41]. The colonic microbiota can convert primary bile acids
which are not reabsorbed to secondary bile acids, e.g., deoxycholic acid, lithocholic acid,
and other secondary bile acids. The composition of the colonic microbiota has a strong
influence on the amount of secondary bile acids formed [6]. In addition to their function
in promoting the absorption of lipids and vitamins, bile acids are involved in metabolic
processes, intestinal motility, inflammatory processes and liver regeneration. Bile acids
exert these effects via bile acid receptors, of which farnesoid X receptor (FXR) and TGR5
receptor are most important and present in many cell types and tissues. Binding of bile
acids to FXR reduces lipid levels, improves insulin sensitivity and suppresses hepatic
gluconeogenesis, while stimulation of TGR5 reduces the production of cytokines.

In conclusion, the intestinal microbiome plays a vital role in CVD via several routes,
and several studies were published relating these diseases to an altered intestinal micro-
biota structure and function (Table 1). Evidence exists that lifestyle and diet, physical
activity, and smoking are modifiers of gut microbiota and, subsequently, are modifiers of
cardiovascular health. Hence, therapeutics targeting the specific gut bacteria and probiotics
supplementation have promising effects that could be used to treat CVD [22,42].

Table 1. Studies concerning gut dysbiosis in CVD [6].

Study Groups Microbiota Results References

Non ischemic heart failure with
reduced ejection fraction; n = 28

(vs. 19 controls)

↑ Streptococcus, Veillonella, Eggerthela
↓ Prevotella, SMB53 (Clostridiaceae) [42]

Patients with ischemic or dilated
cardiomyopathy; n = 84

(vs. 266 controls)

↑ Prevotella, Hungatella (Lacnospiraceae),
Succiniclasticum

↓ Blautia, Anaerostipes, Faecalibacterium,
Lachnospiraceae, Bifidobacterium,

Eubacterium, Coprococcus

[28]

Stable systolic heart failure; n = 20
(vs. 20 controls)

↑ Escherichia-Shigella
↓ Blautia, Collinsella, Ruminococcaceae,
Erysipelotrichaceaem Faecalibacterium

[38]

Patients with ischemic or dilated
cardiomyopathy; n = 53

(vs. 40 controls)

↑ Ruminococcus, Acinetobacter, Veillonella
↓ Faecalibacterium, Alistipes, Oscilibacter [27]
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Table 1. Cont.

Study Groups Microbiota Results References

Patients with hypertension
(≥140/90 mmHg); n = 60

(vs. 60 controls)

↑ Klebsiella, Salmonella, Streptococcus,
Clostridium, Parabacteroides, Eggerthella
↓ Faecalibacterium, Roseburia, Synergistetes

[43]

Patients with hypertension
(≥140/90 mmHg) and

pre-hypertensive patients
(125/80–139/90 mmHg); n = 155

(vs. 41 controls)

↑ Prevotella, Klebsiella, Porphyromonas
↓ Faecalibacterium, Roseburia,
Bifidobacterium, Oscillibacter,

Coprococcus, Butyrivibrio

[44]

Patients with coronary artery disease;
n = 70 (vs. 98 controls)

↑ Escherichia-Shigella, Lactobacillus,
Enterococcus, Streptococcus
↓ Faecalibacterium, Roseburia,

Eubacterium, Subdoligranulum

[45]

Patients with stable angina and old
myocardial infarction who

underwent percutaneous coronary
intervention or bypass; n = 39

(vs. 30 controls)

↑ Lactobacillales
↓ Bacteroides, Clostridium [46]

Patients with atherosclerotic plaques
with clinical presentations of stable or
unstable angina or acute myocardial
infarction; n = 218 (vs. 187 controls)

↑ Enterobacteriaceae, Streptococcus,
Lactobacillus salivarius, Atopobium
parvulum, Ruminococcus gnavus,

Eggerthella lenta
↓ Roseburia, Faecalibacterium

[31]

5. Probiotics and Prebiotics: General Information

Probiotics (Greek; Pro: promotion, Biotic: life) are defined as “live microorganisms
which, when administered in adequate amounts, confer health benefits on the host” [47]. A
large range of fermented products, such as yogurt, kefir, sauerkraut, tempeh, and kimchi,
which serve as sources of probiotic strains, are part of the human diet across diverse
cultures. According to the current state of knowledge, probiotics encompass both bacteria
(Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, Propionibacterium, Bifidobacterium, Bacillus,
some Streptococcus, Enterococcus, Escherichia coli) and yeast (Saccharomyces) genera [48].

Many factors influence the effectiveness of probiotics, including interactions of pro-
biotic bacteria with the host and its microbiome. In order to make a positive impact,
probiotics must chemically or physically inhibit the growth of pathogenic bacteria (e.g.,
Enterococcus faecalis, Salmonella enterica subsp. enterica serotype Enteritidis, Listeria monocyto-
genes, Staphylococcus aureus, and E. coli) by immune, hormonal, and neuronal manipulations.
It is important that they also stimulate the growth of beneficial microorganisms [49].

More and more research increasingly claims that probiotics alleviate many disorders
related to the immune system, cardiovascular health, cancer metastasis, depression, anxiety,
type 2 diabetes, and obesity [48]. Recently, the safety profiles of different probiotics
as a function of different genera, species, and strains, coupled with their relevance to
diverse individuals or at-risk populations, attracted attention [48]. The FAO/WHO (Food
and Agriculture Organization/ World Health Organization) [50] guidelines on probiotic
evaluation from 2002 reported that probiotics may theoretically be linked to specific types of
side effects in patients with underlying medical conditions. The at-risk population groups
are broadly characterized by weakened immune systems, gut dysbiosis, and/or impaired
intestinal barriers, therefore, it is important to carefully assess the safety associated with
deliberate administration of probiotics.

According to the provisions of the WHO, the number of living cells in probiotic foods
at the time of human consumption may not be lower than 106 cells per 1 mL or 1 g of
product. Furthermore, the therapeutic dose is 108–109 cells in 1 mL or 1 g of product [51].
Of note, the contained microorganisms must be resistant to the action of gastric juice and
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bile salts. After passing through this chemical barrier, probiotics should then adhere to the
surface of the intestine, where their health-promoting functions can be realized [51].

Products deemed probiotics enhance the nonspecific cellular immune response through
the activation of natural killer cells and macrophages and the release of various cytokines.
They can also improve the gut mucosal immune system by increasing the number of IgA(+)
cells [52]. Moreover, probiotics can aid the process of digestion and the breakdown of
lactose, improve the absorption of minerals, and enhance the synthesis of many vitamins
(thiamin, riboflavin, niacin, pantothenic acid, vitamin K). They play an important role in
the treatment of various diseases, such as hepatic disease, diarrhea, and gastroenteritis. In
addition, they were also shown to have antiproliferative, proapoptotic, and antioxidative
properties [52].

Prebiotics represent substances most used to maintain a normal gut microbiota and
restore its equilibrium when homeostasis is affected [53–55]. Prebiotics contain only sub-
stances which stimulate microorganism growth; there are no bacteria in their composition [9].
These substances can be obtained from various sources, including soybeans, raw oats.
and honey [9,56]. However, the most popular prebiotics are plant oligosaccharides [51].
Nondigestible carbohydrates, including polysaccharides (resistant starch, pectin, and
dextrin) and oligosaccharides, such as fructooligosaccharides, galactooligosaccharide,
xylooligosacharides, isomaltooligosaccharides, mannanooligosaccharides, raffinose
oligosaccharides, arabinoxylanoligosaccharides, lactulose, and inulin, possess prebiotic
properties [53,54,57]. Prebiotics have the potential to improve human health by controlling
the balance of the intestinal microbiome. They are fermented by the gut bacteria and
produce short-chain fatty acids, e.g., propionate, butyrate, and acetate. The production of
short-chain fatty acids has positive effects, including improvement of intestinal membrane
integrity and absorption of minerals, lowering both glycemic levels and body weight,
improved immunity, and modulation of metabolic, cardiovascular, and inflammatory
biomarkers [53]. Also, the intake of prebiotics favors the growth of beneficial bacteria,
such as Lactobacillus and Bifidobacterium, which are responsible for inhibition of the
proliferation of harmful bacteria (Figure 1) [53,54].
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Due to the benefits to human health, prebiotics are increasingly used by the food
industry as functional ingredients. These compounds can be employed in the production
of whole-wheat bread, cereal bars, chocolate, dairy products, infant formulas, and meat
products, among others. In addition to natural sources, microorganisms and enzymes can
be used for the synthesis of prebiotic compounds [58]. Combinations of prebiotics and
probiotics are called synbiotics [53].

6. The Influence of Probiotics and Prebiotics on the Mechanisms and Factors
Causing CVD
6.1. Oxidative Stress

Oxidative stress is known to play a role in the course of CVD [59,60]. This phenomenon
refers to elevated intracellular levels of oxygen radicals that cause damage to lipids, pro-
teins, and DNA [61]. Reactive oxygen species (ROS), including superoxide anion radicals,
hydroxyl radicals, and hydrogen peroxide, are one of the highly active free radicals. Most
living organisms possess enzymatic defenses (superoxide dismutase (SOD), glutathione
peroxidase (GPx), glutathione reductase (GR), catalase (CAT), nonenzymatic antioxidant
defenses (glutathione (GSH), thioredoxin, vitamin C, vitamin E), and repair systems to
protect them against oxidative stress [61]. However, these native antioxidant systems are
generally not enough to prevent living organisms from oxidative damage. Many researches
showed that probiotic bacteria present significant antioxidant abilities both in vivo and
in vitro [62]. ROS can be both endogenously and exogenously generated. Due to their
highly reactive nature, ROS can modify other oxygen species, DNA, proteins, or lipids.
It is believed that excessive amounts of ROS can cause genomic instability, leading to a
variety of chronic diseases, including atherosclerosis and cardiovascular disease [63]. ROS
are generated by several enzymatic reactions and chemical processes. NADPH oxidase
(NOX) complex is considered to be a major source of ROS generation [64]. There are seven
human NOX homologues that function to purposely produce ROS for a range of host
defense and signaling functions. Recently, Gómez-Guzmán and colleagues suggested that
the probiotics Lactobacillus fermentum CECT5716, Lactobacillus coryniformis CECT5711
(K8), and Lactobacillus gasseri CECT5714 (LC9) (1:1) are able to decrease NOX activity and
mRNA expression of NOX-1 and NOX-4 in spontaneously hypertensive rats [65].

Cyclo-oxygenase (COX) is a rate-limiting enzyme in prostaglandin biosynthesis and
a two-step enzymatic process in which ROS are generated. COX-2 is upregulated in
atherosclerotic lesions and catalyzes the production of the majority of vascular prostanoids
in human atherosclerotic areas. Downregulated COX-2 was found in Helicobacter pylori-
infected mongolian gerbils with a commercial probiotic Lacidofil treatment [66]. Patel and
colleagues demonstrated that Lactobacillus acidophilus pretreatment decreased COX-2
expression in catla thymus macrophages compared to Aeromonas hydrophila and co-
stimulated macrophages [67].

In recent years, many studies focused on antioxidant properties of probiotics. The
culture supernatant, intact cells, and intracellular cell-free extracts of Bifidobacterium animalis
01 were found to scavenge hydroxyl radicals and superoxide anions in vitro [61]. Further,
oxidative stress in patients with type 2 diabetes was found to be ameliorated by multispecies
probiotics [68]. Lactic acid bacteria stains (LAB) were studied widely both in animals
and the human body, revealing that LAB can resist ROS, including peroxide radicals,
superoxide anions, and hydroxyl radicals [61]. Rats fed high-fat diets supplemented
with Lactobacillus plantarum P-8 presented an elevated antioxidant ability, as reflected by
curtailing the accumulation of liver lipids and protecting healthy liver function [69]. In
humans, Lactobacillus rhamnosus exerted strong antioxidant activity in situations of elevated
physical stress [61]. During the past decades, studies demonstrated that probiotic bacteria
strains could exert antioxidant capacity in different ways (Figure 2).

Dietary supplementation of prebiotics, e.g., inulin or oligofructose, contributes to
protection from oxidative stress. Inulin, through short-chain fatty acids, can act as a scav-
enger of reactive oxygen species (ROS). It is also able to modulate responses to pathogenic
bacterial insults (LPS) and protect gut from inflammatory processes, probably stimulating
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defenses against ROS by upregulating colonic mucosal detoxification enzymes (GSTs); in
this way, inulin restores the level of some important proteins involved in intestinal smooth
muscle contraction [70].
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6.2. Inflammation

Low-grade inflammation is the cornerstone of many chronic diseases. This type of
inflammation increases with age, being common in people of advanced age, and is known
to be a risk factor for CVD [6]. In these cardiovascular conditions, higher plasma levels
of proinflammatory mediators, such as TNFα, IL1, and IL6, are frequently found. Often,
inflammation is linked to an increased intestinal permeability, with elevated intestinal
translocation of proinflammatory mediators of bacterial origin, such as LPS. Increased
cumulative incidence of CVD with increased serum levels of LPS-binding protein was
previously noted. LPS and other bacterial cell membrane constituents are recognized by
several receptors on endothelial cells. Binding of LPS directly induces adhesion molecules,
such as ICAM-1 and P-selectin on endothelial cells, which are important for interactions
with leukocytes [71].

The abovementioned data highlight the potential role of the gut microbiota in control-
ling intestinal permeability and endotoxemia and, therefore, the development of chronic,
low-grade inflammation and the risk for CVD. These findings explain why there is in-
creasing interest in developing intervention strategies targeting the microbiota to achieve
downregulation of low-grade inflammation as a way of preventing CVD. Therefore, foods
and ingredients, such as probiotics and prebiotics, represent promising tools for the dietary
management of CVD risk [6].

Tenorio-Jimenez et al. [72] reported that a 12-week administration of L. reuteri V3401
was associated, beyond a reduced risk of CVD, with lower levels of inflammation biomark-
ers, such as TNF-α, IL-6, IL-8, and soluble intercellular adhesion molecule-1, in obese
adults aged 18 to 65 years with metabolic syndrome. However, although some studies
demonstrated that probiotics can decrease the production of proinflammatory cytokines,
their underlying mechanism remains unclear [9].

In recent years, many research focused on the use of dietary fibers and prebiotics,
since many of these polysaccharides can be metabolized by intestinal microbiota, leading to
the production of short-chain fatty acids. These metabolites of prebiotic fermentation show
anti-inflammatory and immunomodulatory capabilities [53,54]. Kanner et al. [73] showed
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that inulins, as dietary antioxidants, may play a role in preventing lipid peroxidation in
the stomach. In general, dietary supplementation of inulin or oligofructose contributes
to protection from oxidative stress, consequently preventing inflammatory reactions asso-
ciated with oxidative stress [70]. Goderska valuated the prebiotic and anti-inflammatory
properties of lactobionic acid (LBA), observing bacterial growth proportional to its concen-
tration, especially for Lactobacilli and Bifidobacterium [74]. LBA is probably resistant to
digestive enzymes, so it reaches the colon intact where it is fermented by microbiota. On
the other hand, LBA also has anti-inflammatory properties, and it was demonstrated that
its administration was associated with a decrease in obesity and better control of metabolic
parameters [75].

Isomaltooligosaccarides (IMOs) also promote Lactobacilli and Bifidobacterium growth
both in vitro and in vivo [76]. An in vivo study showed the positive effects of isomal-
tooligosaccarides, green tea extract (GTE), and a combination of IMO and GTE on visceral
adipose tissue on the production of proinflammatory cytokines and on lipid and glycemic
control. It was also shown to improve insulin, glucagon, and leptin levels in mice [77]. It
was investigated that galactooligosaccharides (GOS) can modulate inflammatory process
and immune function. GOS increases the levels of cytokine IL-10, interleukin 8 (IL-8), and
C-reactive protein and improves natural killer (NK) cell activity [78].

6.3. Hypercholesterolemia and High Blood Pressure

Probiotics may reduce cholesterol levels by means of several mechanisms [9]. Most
Bifidobacteria bacteria demonstrate higher choliloglicin hydrolase activity than do other
microorganisms. This enzyme hydrolyzes the amide bonds conjugated with taurine or
glycine in bile acids, resulting in the release of primary bile acids; these are easily precipi-
tated at low pH, resulting in their expulsion from the gastrointestinal tract. As these are
not reabsorbed from the intestine, they must be replaced by bile produced in the liver from
blood cholesterol [51]. Probiotics may exert cholesterol-lowering effects through bile salt
hydrolase (an enzyme of probiotics which hydrolyzes bile salts into amino acid residues
and free bile salts) [79]. These beneficial effects were demonstrated in both animal models
and clinical trials [80,81]. Furthermore, the relationship between gut microbiota, probiotics,
and disturbances in lipid metabolism are well explained.

In a randomized, single-blinded, controlled clinical trial, the supplementation with
200 g/day of a probiotic yogurt containing Streptococcus thermophiles, L. bulgaricus, L.
acidophilus LA-5, and B. animalis BB12 for nine weeks among 70 pregnant women in the
third trimester of gestation resulted in a significant reduction in total cholesterol, low-
density lipoprotein (LDL) cholesterol, and high-density lipoprotein (HDL) levels, as well
as serum triglyceride concentrations [82]. In another study conducted by Hoppu et al. [83],
256 pregnant women allocated into three groups, including dietary counseling with probi-
otics (L. rhamnosus GG and B. lactis), placebo dietary counseling, and without counseling
(control group) from the first trimester of pregnancy to 12 months postpartum, exhibited
similar lipid serum levels during pregnancy. In other research, small-scale, double-blind,
placebo-controlled studies observed the beneficial effects of probiotic supplementation in
dyslipidemia [84].

It was indicated that probiotic supplementation reduces blood lipid concentrations [85].
Lew et al. [86] found that L. plantarum DR7 exerts cholesterol-lowering properties via
AMPK phosphorylation. Another group of researchers [87] suggested that the probiotic
L. plantarum PH40 may also possess cholesterol-lowering properties.

Many clinical trials found probiotic use to be associated with a moderate or significant
reduction in blood pressure [9,88,89]. The antihypertensive action of probiotics is believed
to act via several mechanisms, including regulating the renin–angiotensin system [89].
Probiotics also play a role in thrombotic disorders. Although the precise roles played by
probiotics in the modulation of hemostasis and its various elements, such as blood platelet
function, are generally not well documented, several reports were produced on this subject.
For example, Schreiber et al. indicated that L. reuteri reduces P-selectin expression on the
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platelet surface and decreases blood platelet–endothelial cell interactions in rats treated
with dextran sodium sulfate [90]. Moreover, Haro and Medina [91] reported that the oral
administration of L. casei CRL431 may be a promising candidate for the prevention of
thrombotic complications associated with pneumococcal pneumonia.

In summary, probiotics play an important role in the treatment of various diseases,
such as hepatic disease, diarrhea, and gastroenteritis. Probiotics were also shown to have
antioxidative, antiplatelet, and anti-inflammatory properties and to lower the level of
cholesterol (Figure 3).
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Prebiotics also reduce levels of cholesterol. Parnell and Reiner [92] reported that prebi-
otic intake lowered total serum cholesterol in a hypercholesterolemic rat model. During
this research, rats were administered one of three diets with 0, 10, or 20% prebiotic fiber for
10 weeks. Both doses of prebiotic fiber reduced serum cholesterol concentrations about
25%. Moreover, this change was correlated with an increase in caeca digesta, as well as the
upregulation of genes involved in cholesterol biosynthesis and bile production. In addition,
the obese rats with 10% prebiotic supplementation demonstrated an approximately 40%
reduction in triacylglycerol accumulation in the liver. Obesity is often associated with
the progression of cardiovascular disease and both probiotic and prebiotic intake were
reported to have antiobesogenic effects in various clinical trials [93–95].

A number of researches reported synbiotics to possess promising hypercholesterolemic
properties [96–98]. Mofid et al. [96] noted that the regular intake of synbiotic yogurts re-
duces the risk of cardiovascular diseases among hypercholesterolemic patients. Liong et al. [97]
reported that a synbiotic containing L. acidophilus ATCC 4962 reduced total cholesterol,
triacylglycerol, and LDL-cholesterol in hypercholesterolemic pigs via the interrelated ways
of lipid transporters, including high-density lipoprotein, low-density lipoprotein, and very
low-density lipoprotein (VLDL). The animals on the synbiotic diet were fed with L. aci-
dophilus ATCC 4962 (1 g/pig per day), mannitol (1.56 g/pig per day), fructo-oligosacharides
(1.25 g/pig per day), and inulin (2.2 g/pig per day).
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7. Conclusions

The intake of probiotics and prebiotics plays an important role in the restoring the
normal intestinal flora favoring the growth of beneficial bacteria and reducing the risk of
development of chronic ailments, such as cardiovascular disease. Therefore, the interest
of these compounds as ingredients for the elaboration of novel foods with functional
characteristics is well accepted. Addressing these problems is at the early stages of research.
The scientific community must fully clarify how native microbiota affects human health
and wellbeing while reliably modeling predictions of interactions of probiotic strains and
native gut microbiota, which would allow successful personalization of prebiotic and
probiotic therapy, determination of the length of supplementations, and definition of the
optimal dosages for individuals to maintain cardiovascular health or to ameliorate some
cardiovascular disease.

The field of gut microbiome research is relatively new and complex, and the methods
used are far from standardized and harmonized. In many clinical studies, sample sizes
were relatively small, with control groups often lacking. A disturbing issue is that different
methods were applied for samples for collecting, processing, and storing. It was shown
that these methodological differences pose a risk for introducing artefacts. The enormous
datasets generated when microbiota, metabolomes, genomes, and transcriptomes are
evaluated in cohorts or in intervention studies are challenging, and different complex
bioinformatics methods have been applied. There is clearly a need to develop this area
of research both in observational and randomized intervention trials. Thus, to enhance
the current level of understanding, well-designed clinical trials involving all the aspects of
lifestyle, gut microbiota, metabolites, and genetic background should be developed.
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